Bzoj2705 Longge的问题
Time Limit: 3000MS | Memory Limit: 131072KB | 64bit IO Format: %lld & %llu |
Description
Input
Output
Sample Input
6
Sample Output
15
Hint
【数据范围】
对于60%的数据,0<N<=2^16。
对于100%的数据,0<N<=2^32。
Source
求Σgcd(i,n) (1<=i<=n)
暴力枚举当然可行,但是TLE不可避。
考虑转化问题,从1到n的范围内,有许多个i的gcd(i,n)等于同一个n的因数。我们可以枚举n的每一个因数k,累计“以该数k为解的gcd(i,n)的个数s(k)"乘以该数,就能得到答案。
若有gcd(n,m)=k,那么n和m同除公约数k后,可以得到gcd(n/k,m/k)=1。由前式可知(m/k)与(n/k)互质。满足条件的(m/k)个数,也就是s(k)就等于phi(n/k) ←欧拉函数!
解1:直接套模板。算法无误,但是因为题目数据大,保存函数后再处理会RE(原因目测是存储用数组开不了那么大)
/*by SilverN*/
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
const int maxn=;
long long n;
int m[maxn],phi[maxn],p[maxn],pt;
int euler()
{
phi[]=;
int N=maxn;
int k;
for(int i=;i<N;i++)
{
if(!m[i])//i是素数
p[pt++]=m[i]=i,phi[i]=i-;
for(int j=;j<pt&&(k=p[j]*i)<N;j++)
{
m[k]=p[j];
if(m[i]==p[j])//为了保证以后的数不被再筛,要break
{
phi[k]=phi[i]*p[j];
/*这里的phi[k]与phi[i]后面的∏(p[i]-1)/p[i]都一样(m[i]==p[j])只差一个p[j],就可以保证∏(p[i]-1)/p[i]前面也一样了*/
break;
}
else
phi[k]=phi[i]*(p[j]-);//积性函数性质,f(i*k)=f(i)*f(k)
}
}
}
int main(){
euler();
scanf("%lld",&n);
long long m=sqrt(n);
int i,j;
long long ans=;
for(i=;i<=m;i++){
if(n%i==){
ans+=phi[n/i]*i;
ans+=(n/i)*phi[i];
}
}
printf("%lld\n",ans);
return ;
}
解2:多花点时间,每次都算一遍。并不会TLE,神奇
代码是从hzw学长那学到的,精简得很。
/*by SilverN*/
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
const int mxn=;
long long n,m;
long long phi(long long x){
long long a=x;
for(long long i=;i<=m;i++){
if(x%i==){//找到因数
a=a/i*(i-);//基本计算公式 a*=((i-1)/i)
while(x%i==)x/=i;//除去所有相同因数
}
}
if(x>)a=a/x*(x-);//处理最后一个大因数
return a;
}
int main(){
scanf("%lld",&n);
m=sqrt(n);
int i,j;
long long ans=;
for(i=;i<=m;i++){
if(n%i==){
ans+=phi(n/i)*i;
ans+=(n/i)*phi(i);
}
}
printf("%lld\n",ans);
return ;
}
Bzoj2705 Longge的问题的更多相关文章
- Bzoj-2705 Longge的问题 欧拉函数
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2705 题意: 求 sigma(gcd(i,n), 1<=i<=n<2^3 ...
- BZOJ2705 SDOI2012 Longge的问题 【欧拉函数】
BZOJ2705 SDOI2012 Longge的问题 Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, ...
- BZOJ2705: [SDOI2012]Longge的问题
Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一 ...
- 【bzoj2705】 SDOI2012—Longge的问题
http://www.lydsy.com/JudgeOnline/problem.php?id=2705 (题目链接) 题意 给定一个整数N,你需要求出∑gcd(i, N)(1<=i <= ...
- 【BZOJ2705】【Sdoi2012】Longge的问题
Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出\(\Sigma gcd(i, N) (1 \leq i \leq N ...
- 【欧拉函数】BZOJ2705: [SDOI2012]Longge的问题
Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Solut ...
- BZOJ2705:[SDOI2012]Longge的问题——题解
http://www.lydsy.com/JudgeOnline/problem.php?id=2705 Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在 ...
- 【bzoj2705】[SDOI2012]Longge的问题
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2507 Solved: 1531[Submit][ ...
- [SDOi2012]Longge的问题 BZOJ2705 数学
题目背景 SDOi2012 题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). ...
随机推荐
- Hibernate出现javax.naming.NoInitialContextException 错误的解决办法
异常信息: 08:02:56,329 WARN SessionFactoryObjectFactory:123 - Could not unbind factory from JNDI javax.n ...
- java8-4 多态的练习以及题目
1./* 多态练习:猫狗案例*/ class Animal { public void eat(){ System.out.println("吃饭"); } } class Dog ...
- 十一、常用的NSArray和NSMutableArray方法
1.概念 用来存储OBJ对象的有序列表,它是不可变的 2.创建常用方法 + (id)array + (id)arrayWithObect:(id)anObject + (id)arrayWithObe ...
- 【转】【C#】C# 垃圾回收机制
摘要:今天我们漫谈C#中的垃圾回收机制,本文将从垃圾回收机制的原理讲起,希望对大家有所帮助. GC的前世与今生 虽然本文是以.NET作为目标来讲述GC,但是GC的概念并非才诞生不久.早在1958年,由 ...
- C#中成员初始化顺序
http://blog.csdn.net/huangcailian/article/details/25958967 一.成员初始化整体顺序 1.成员赋值初始化先于构造函数: 2.成员赋值初始先从子类 ...
- matlab如何连同换行也输入txt中
\r是回车符,\n是换行符,两者结合方能在txt显示为换行 fidID = fopen('test.txt', 'w+'); str='string'; fprintf(fidID,'%s \r\n' ...
- MATLAB元胞数组
MATLAB元胞数组 元胞数组: 元胞数组是MATLAB的一种特殊数据类型,可以将元胞数组看做一种无所不包的通用矩阵,或者叫做广义矩阵.组成元胞数组的元素可以是任何一种数据类型的常数或者常量,每一个元 ...
- [C#详解] (1) 自动属性、初始化器、扩展方法
文章来源:Slark.NET-博客园 http://www.cnblogs.com/slark/p/CSharp-focus-1.html 代码下载:点我下载 目录 前言 属性与自动属性 属性 自动属 ...
- sass,compass让开发效率飞起
最近开始学习并且使用,发现使用它写起css来真的是各种爽 安装sass,compass sass是依赖于ruby的,必须先安装Ruby,点击下载 下载完ruby之后,使用命令行安装sass ...
- 关于 iOS 10 中 ATS / HTTPS /2017 问题
本文于 2016 年 11 月 28 日按照 Apple 最新的文档和 Xcode 8 中的表现进行了部分更新. WWDC 15 提出的 ATS (App Transport Security) 是 ...