传送门


一开始读错题了,以为是\(\sum_{1\leq u\leq v\leq n}f(u,v)\),还疑惑这题这么简单怎么没人做(

实际上是\(\sum_{1\leq u\leq v\leq n}f(u,v)^{f(u,v)}\)(捂脸)

这个东西拆分是几乎不可做的,因此只能直接算。

发现对于固定起点的一条链,在链上做前缀\(\text{and}\)运算时只会使某些位的\(1\)变为\(0\),因此可能的\(\text{and}\)取值只有不超过\(\log a\)种。即,对于确定根的某个子树,以根为一端的链\(\text{and}\)值最多只有\(d\log a\)种,其中\(d\)为子树叶子个数。

直接dfs即可,每个点维护子树中以其为一端的链\(\text{and}\)值的种类和出现次数的集合。每次合并两棵子树时,暴力枚举两个集合中所有值计算。发现两个叶子只有在lca处才会产生\(\log^2a\)的复杂度,即合并叶子的总复杂度不超过\(d^2\log^2a\)。又由于路径最多\(n^2\)条,\(nd\leq 3\times 10^6\)就变成很强的性质了,\(O(\min(n,d\log a)^2)\leq O(nd\log a)\),在\(d\)取\(\frac{n}{\log a}\)时取到等号。

然而\(\color{grey}{\text{swk}}\)太菜了,犯了两个错误,都会导致复杂度上升至\(O(nd\log^2 a)\):

  • 维护子树中以其为一端的链\(\text{and}\)值的种类和出现次数的集合时,每次合并一棵子树要对值的种类去重。\(\color{grey}{\text{swk}}\)采用了暴力排序后去重的方法。然而正解是直接将两个vector拼接在一起,只在交接处去重。可以发现这样做不会使复杂度上界上升。

  • 题面中的模数是有深意的,给出原根的目的是通过预处理离散对数来避免快速幂。然而\(\color{grey}{\text{swk}}\)没注意到这点,就直接暴力快速幂了QAQ

然而所幸的是这两只\(\log a\)都属于常数较小的一类,加之数据很难做到卡满,\(\color{grey}{\text{swk}}\)仍然完成了\(2999ms\)通过时限\(3s\)的题目的壮举(逃

[Comet OJ - Contest #9 & X Round 3] Namid[A]me的更多相关文章

  1. Comet OJ - Contest #9 & X Round 3题解

    传送门 \(A\) 咕咕 typedef long long ll; int a1,a2,n,d;ll res; int main(){ scanf("%d%d%d",&a ...

  2. Comet OJ - Contest #9 & X Round 3 【XR-3】核心城市 【树的理解】

    一.题目 [XR-3]核心城市 二.分析 题意就是在树中确定$K$个点,满足剩下的$N-K$个点中到这$K$个点的最大距离尽可能小. 理解上肯定是确定一个根,这个根是这个图的中心. 可以通过根据结点的 ...

  3. Comet OJ - Contest #2 简要题解

    Comet OJ - Contest #2 简要题解 cometoj A 模拟,复杂度是对数级的. code B 易知\(p\in[l,r]\),且最终的利润关于\(p\)的表达式为\(\frac{( ...

  4. Comet OJ - Contest #2简要题解

    Comet OJ - Contest #2简要题解 前言: 我没有小裙子,我太菜了. A 因自过去而至的残响起舞 https://www.cometoj.com/contest/37/problem/ ...

  5. Comet OJ - Contest #4--前缀和

    原题:Comet OJ - Contest #4-B https://www.cometoj.com/contest/39/problem/B?problem_id=1577传送门 一开始就想着暴力打 ...

  6. Comet OJ - Contest #11 题解&赛后总结

    Solution of Comet OJ - Contest #11 A.eon -Problem designed by Starria- 在模 10 意义下,答案变为最大数的最低位(即原数数位的最 ...

  7. Comet OJ - Contest #8

    Comet OJ - Contest #8 传送门 A.杀手皇后 签到. Code #include <bits/stdc++.h> using namespace std; typede ...

  8. Comet OJ - Contest #13-C2

    Comet OJ - Contest #13-C2 C2-佛御石之钵 -不碎的意志-」(困难版) 又是一道并查集.最近做过的并查集的题貌似蛮多的. 思路 首先考虑,每次处理矩形只考虑从0变成1的点.这 ...

  9. Comet OJ - Contest #13 「火鼠的皮衣 -不焦躁的内心-」

    来源:Comet OJ - Contest #13 芝士相关: 复平面在信息学奥赛中的应用[雾 其实是道 sb 题??? 发现原式貌似十分可二项式定理,然后发现确实如此 我们把 \(a^i\) 替换成 ...

随机推荐

  1. Delphi XE2 之 FireMonkey 入门(38) - 控件基础: TPopupMenu、TMenuItem、TMenuBar、TMainMenu

    Delphi XE2 之 FireMonkey 入门(38) - 控件基础: TPopupMenu.TMenuItem.TMenuBar.TMainMenu 相关控件: TMenuBar.TPopup ...

  2. 【工具安装】VMware 安装教程

    介绍:介绍一下 VMware 的安装. 0x01. 下载软件 打开官网 VMware Workstation Pro 点击立即下载即可.  也可以直接使用迅雷,添加下载任务,比浏览器下载速度快些,提 ...

  3. Selenium学习之==>WebDriver驱动对照表

    转自www.imdsx.cn 1.Chrome 对于chrome浏览器,有时候会有闪退的情况,也许是版本冲突的问题,我们要对照着这个表来对照查看是不是webdriver和chrome版本不对. chr ...

  4. firewalld无法使用解决

    一.安装完Python3.6.5后无法使用firewalld解决 解决:需要把/usr/sbin/firewalld./usr/bin/firewall-cmd 的头部内容改为原来的 pyton2.7 ...

  5. Gradle之Gradle 的基本使用(一)

    [Android 修炼手册]Gradle 篇 -- Gradle 的基本使用 预备知识 基本的 android 开发知识 了解 Android Studio 基本使用 看完本文可以达到什么程度 掌握 ...

  6. 正经Python汤不热爬虫

    转自:https://github.com/facert/tumblr_spider install pip install -r requirements.txt run python tumblr ...

  7. Java ——接口

    本节重点思维导图 定义: public interface Traffic { public static final int sits = 4; public abstract void run() ...

  8. WEB框架实战总结

    Django 在新一代的 Web框架 中非常出色 使用Python开发Web,最简单,原始和直接的办法是使用CGI标准,可以用WSGI接口 一.WSGI接口实现web页面 运行WSGI服务 我们先编写 ...

  9. shoi 魔法树

    Harry Potter新学了一种魔法:可以改变树上的果子个数.满心欢喜的他找到了一个巨大的果树,来试验他的新法术.这棵果树共有N个节点,其中节点0是根节点,每个节点u的父亲记为fa[u],保证有fa ...

  10. SwipeRefreshLayout和RecyclerView类

    1 SwipeRefreshLayout和RecyclerView之间的关系 内容栏上下滚动是RecyclerView控制的,只有当内容栏滑动到最顶上时,再也拉不动了的时候,这个时候将动作交给Swip ...