[Comet OJ - Contest #9 & X Round 3] Namid[A]me
一开始读错题了,以为是\(\sum_{1\leq u\leq v\leq n}f(u,v)\),还疑惑这题这么简单怎么没人做(
实际上是\(\sum_{1\leq u\leq v\leq n}f(u,v)^{f(u,v)}\)(捂脸)
这个东西拆分是几乎不可做的,因此只能直接算。
发现对于固定起点的一条链,在链上做前缀\(\text{and}\)运算时只会使某些位的\(1\)变为\(0\),因此可能的\(\text{and}\)取值只有不超过\(\log a\)种。即,对于确定根的某个子树,以根为一端的链\(\text{and}\)值最多只有\(d\log a\)种,其中\(d\)为子树叶子个数。
直接dfs即可,每个点维护子树中以其为一端的链\(\text{and}\)值的种类和出现次数的集合。每次合并两棵子树时,暴力枚举两个集合中所有值计算。发现两个叶子只有在lca处才会产生\(\log^2a\)的复杂度,即合并叶子的总复杂度不超过\(d^2\log^2a\)。又由于路径最多\(n^2\)条,\(nd\leq 3\times 10^6\)就变成很强的性质了,\(O(\min(n,d\log a)^2)\leq O(nd\log a)\),在\(d\)取\(\frac{n}{\log a}\)时取到等号。
然而\(\color{grey}{\text{swk}}\)太菜了,犯了两个错误,都会导致复杂度上升至\(O(nd\log^2 a)\):
维护子树中以其为一端的链\(\text{and}\)值的种类和出现次数的集合时,每次合并一棵子树要对值的种类去重。\(\color{grey}{\text{swk}}\)采用了暴力排序后去重的方法。然而正解是直接将两个vector拼接在一起,只在交接处去重。可以发现这样做不会使复杂度上界上升。
题面中的模数是有深意的,给出原根的目的是通过预处理离散对数来避免快速幂。然而\(\color{grey}{\text{swk}}\)没注意到这点,就直接暴力快速幂了QAQ
然而所幸的是这两只\(\log a\)都属于常数较小的一类,加之数据很难做到卡满,\(\color{grey}{\text{swk}}\)仍然完成了\(2999ms\)通过时限\(3s\)的题目的壮举(逃
[Comet OJ - Contest #9 & X Round 3] Namid[A]me的更多相关文章
- Comet OJ - Contest #9 & X Round 3题解
传送门 \(A\) 咕咕 typedef long long ll; int a1,a2,n,d;ll res; int main(){ scanf("%d%d%d",&a ...
- Comet OJ - Contest #9 & X Round 3 【XR-3】核心城市 【树的理解】
一.题目 [XR-3]核心城市 二.分析 题意就是在树中确定$K$个点,满足剩下的$N-K$个点中到这$K$个点的最大距离尽可能小. 理解上肯定是确定一个根,这个根是这个图的中心. 可以通过根据结点的 ...
- Comet OJ - Contest #2 简要题解
Comet OJ - Contest #2 简要题解 cometoj A 模拟,复杂度是对数级的. code B 易知\(p\in[l,r]\),且最终的利润关于\(p\)的表达式为\(\frac{( ...
- Comet OJ - Contest #2简要题解
Comet OJ - Contest #2简要题解 前言: 我没有小裙子,我太菜了. A 因自过去而至的残响起舞 https://www.cometoj.com/contest/37/problem/ ...
- Comet OJ - Contest #4--前缀和
原题:Comet OJ - Contest #4-B https://www.cometoj.com/contest/39/problem/B?problem_id=1577传送门 一开始就想着暴力打 ...
- Comet OJ - Contest #11 题解&赛后总结
Solution of Comet OJ - Contest #11 A.eon -Problem designed by Starria- 在模 10 意义下,答案变为最大数的最低位(即原数数位的最 ...
- Comet OJ - Contest #8
Comet OJ - Contest #8 传送门 A.杀手皇后 签到. Code #include <bits/stdc++.h> using namespace std; typede ...
- Comet OJ - Contest #13-C2
Comet OJ - Contest #13-C2 C2-佛御石之钵 -不碎的意志-」(困难版) 又是一道并查集.最近做过的并查集的题貌似蛮多的. 思路 首先考虑,每次处理矩形只考虑从0变成1的点.这 ...
- Comet OJ - Contest #13 「火鼠的皮衣 -不焦躁的内心-」
来源:Comet OJ - Contest #13 芝士相关: 复平面在信息学奥赛中的应用[雾 其实是道 sb 题??? 发现原式貌似十分可二项式定理,然后发现确实如此 我们把 \(a^i\) 替换成 ...
随机推荐
- 在SOUI3中使用预编译XML
传统的XML文件通常是utf8编码的文本文件.使用文本文件好处在于方便查阅及修改. SOUI使用XML做为布局描述语言,所有的布局资源都是XML.文本文件格式自由,XML解析器需要对文件中的字符逐个解 ...
- CentOS安Elasticsearch
工作中有需求用到es做数据分析和日志搜索的,整理记录一下安装部署过程.ElasticSearch是一个基于Lucene的搜索服务器.它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful we ...
- webService框架CXF的简单使用
最近本来已经将上一个项目交活,全身心投入了另外项目的前端的开发工作.可之前的项目经理通知我,之前的项目需要做一个webService的功能,于是稍微做了一下webService,可是忘了通知我现在的项 ...
- unity让碰撞只发生一次
碰撞发生在帧的开始,所以你可以检测到冲突,并在LateUpdate复位: private bool hasCollided = false; void OnCollisionEnter(Collisi ...
- 【组策略】1.组策略介绍group policy
组策略介绍group policy 高效学习法,念念不忘,必有回响. 分享一个高效学习思维,潜意识思考.就是在您没有大量时间的情况下,学习十分钟. 然后离开去完成别的事情的时候,大脑潜意识中还会继续思 ...
- python+selenium操作cookie
WebDriver提供了操作Cookie的相关方法,可以读取.添加和删除cookie信息. WebDriver操作cookie的方法: get_cookies(): 获得所有cookie信息. get ...
- 第二章 Git
1.安装 这个就不必细说了 2.安装完后还要进行一步设置. 在命令行输入: git config --global user.name "Your Name" git config ...
- ant buid.xml 模板
<?xml version="1.0" encoding="UTF-8"?> <project name="ant" de ...
- Linux下安装tomcat与配置
准备工作:将下载好的tomcat 9.0上传到自己的阿里云服务器(推荐根目录下) 附下载地址:https://archive.apache.org/dist/tomcat/tomcat-9/v9.0. ...
- [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块)
[BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\su ...