UVA 1642 MagicalGCD 题解
本题是一道区间最大公约数的模板题;
如果N^2暴力的话当然会超时,所以我们要发掘出区间gcd的特点;
设gcd[i]表示区间[1,i]的最大公约数;
我们可以发现,从一个点i到1之间的所有区间的gcd均满足gcd[j]=GCD(gcd[j-1],a[j]);
由于gcd的性质,所以gcd[]是单调不增的;
接着,我们似乎发现了一个更神奇的事情,g[]中不同的值最多有log(max(a[i]))个;
换句话说,虽然g[]数组的长度为n,但在以上两个条件的限制下,最多仅仅有logA个值发生改变的地方;
所以我们遍历一遍右端点,处理出每个i到j(0<=i<=j)的区间的最大公约数;
注意,这并不再是n^2了,因为从i到j在long long 范围内最多有64个不同的值,所以我们只要遍历一遍这些点i就可以知道所有的0<=i<=j到j的区间的gcd;
神奇吧?
综上所述,求出所有区间的gcd仅仅需要nlogA的时间,完全可以切掉这道题;
#include <bits/stdc++.h>
#pragma GCC optimize(3)
#define ll long long
using namespace std;
int n;
long long a[];
long long gcd(long long a,long long b)
{
if(b==) return a;
return gcd(b,a%b);
}
vector<pair<long long ,long long> > vec[]; //第一维是值,第二维是在枚举右端点所用的点的编号
int main ()
{
cin>>n;
for(register int i=;i<=n;i++){
scanf("%lld",&a[i]);
}
for(register int i=;i<=n;i++){
long long x=a[i],y=i;
vec[i].push_back(make_pair(x,y));
for(register int j=;j<vec[i-].size();j++){
if(x==) break;
long long GCD=gcd(x,vec[i-][j].first);
if(GCD!=x){
x=GCD;
y=vec[i-][j].second;
vec[i].push_back(make_pair(x,y));
}
}
}
long long ans=;
for(register int i=;i<=n;i++){
int w=vec[i].size()-;
for(register int j=;j<w;j++){
pair<long long,long long> p1=vec[i][j];
pair<long long,long long> p2=vec[i][j+];
ans=max(ans,p1.first*(i-p2.second)); //注意,i-p2.second却不加1的原因是因为该区间其实是[p2.second,i-1];
}
ans=max(ans,vec[i][vec[i].size()-].first*i);
}
cout<<ans;
}
UVA 1642 MagicalGCD 题解的更多相关文章
- Magical GCD UVA 1642 利用约数个数少来优化 给定n个数,求使连续的一段序列的所有数的最大公约数*数的数量的值最大。输出这个最大值。
/** 题目:Magical GCD UVA 1642 链接:https://vjudge.net/problem/UVA-1642 题意:给定n个数,求使连续的一段序列的所有数的最大公约数*数的数量 ...
- uva 1642 Magical GCD
很经典的题目,愣是没做出来.. 题意:给出一个序列,求一子序列,满足其GCD(子序列)* length(子序列)最大. 题解: 类似单调队列的思想,每次将前面所得的最大公约数与当前数进行GCD,若GC ...
- UVa 1642 - Magical GCD(数论)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVA 1642 Magical GCD(经典gcd)
题意:给你n(n<=100000)个正整数,求一个连续子序列使序列的所有元素的最大公约数与个数乘积最大 题解:我们知道一个原理就是对于n+1个数与n个数的最大公约数要么相等,要么减小并且减小至少 ...
- UVA - 1642 Magical GCD 数学
Magical GCD The Magical GCD of a nonempty sequence of positive integer ...
- UVa 1642 (综合) Magical GCD
题意: 给出一个数列,求一个连续的子序列,使得MGCD(i, j) = 该子序列的长度(j-i+1) × 子序列的gcd 最大,并输出这个最大值. 分析: 感觉可能要用优先队列,但貌似也用不上. 但 ...
- UVA 1642 Magical GCD(gcd的性质,递推)
分析:对于区间[i,j],枚举j. 固定j以后,剩下的要比较M_gcd(k,j) = gcd(ak,...,aj)*(j-k+1)的大小, i≤k≤j. 此时M_gcd(k,j)可以看成一个二元组(g ...
- UVa 1642 Magical GCD (暴力+数论)
题意:给出一个长度在 100 000 以内的正整数序列,大小不超过 10^ 12.求一个连续子序列,使得在所有的连续子序列中, 它们的GCD值乘以它们的长度最大. 析:暴力枚举右端点,然后在枚举左端点 ...
- 紫书 例题 10-29 UVa 1642(最优连续子序列)
这类求最优连续子序列的题一般是枚举右端点,然后根据题目要求更新左端点, 一般是nlogn,右端点枚举是n,左端点是logn 难点在于如何更新左端点 用一些例子试一下可以发现 每次加进一个新元素的时候 ...
随机推荐
- sh_02_del关键字
sh_02_del关键字 name_list = ["张三", "李四", "王五"] # (知道)使用 del 关键字(delete)删除 ...
- KMP 串的模式匹配 (25 分)
给定两个由英文字母组成的字符串 String 和 Pattern,要求找到 Pattern 在 String 中第一次出现的位置,并将此位置后的 String 的子串输出.如果找不到,则输出“Not ...
- Understanding the Transform Function in Pandas
Understanding the Transform Function in Pandas 来源 What is transform? 我在 Python Data Science Handbook ...
- docker-compose常用命令(持续更新...)
build 构建或重建服务 help 命令帮助 kill 杀掉容器 logs 显示容器的输出内容 port 打印绑定的开放端口 ps 显示容器 pull 拉取服务镜像 restart 重启服务 rm ...
- Vue可自定义tab组件
在工作中我们常常要用到tab组件,如果有用第三方组件库的话一般都会有这个组件,但如果没有使用第三方组件库,或者想要自定义tab,那么或许这个无依赖的tab组件将会极大地节约你的开发时间. 如何 ...
- SpringMVC学习记录(六)--Validator验证
一.基于Validator接口的验证. 首先创建User实例,并加入几个属性 public class User { private String username; private String p ...
- 一、基础篇--1.2Java集合-List、Set、Map区别
List.Set.Map区别 三者关系如下: 结构特点 1.List和Set是存储单列数据集合,Map是存储键值对这样的双列数据集合: 2.List中存储的数据都是有序的,并且允许重复:Map中存储 ...
- 对保存的参数checkpoints进行可视化读取 1.pywrap_tensorflow.NewCheckpoint(获得checkpoint的读取器) 2.np.save(对npy文件进行保存) 3.tl.file.load_npy_to_any(对保存的npy文件进行读取)
1. pywrap_tensorflow.NewCheckpoint(path)获得checkpoint的读取器 参数说明: path表示checkpoint的路径 2.np.save(path, d ...
- php实现:当未登录时转到登陆页面
判断session是否存在,不存在则跳转到登录页面session_start(); if ( !$_SESSION['xxx'] ) { header("Location: login ...
- python - yeild
带有yield的函数不仅仅只用于for循环中,而且可用于某个函数的参数,只要这个函数的参数允许迭代参数.比如array.extend函数,它的原型是array.extend(iterable). 带有 ...