KNN算法是机器学习中入门级算法,属于监督性学习算法。SupervisedLearning.

通过Plinko游戏来介绍该算法。

就是随机在上面投球,然后球进下面的哪个地方就得多少分。

然后在规定得投次数得到最高得分数,应该怎么投?

然后预测每次投能得到多少分?

首先应该通过训练数据集,看看在每个位置投得点,能得到多少分,然后预测点距离每次点得距离,然后排序,那么预测点周围出现次数最多得就是大概率得到得分数。

1,通过训练得数据集,提取特征值和标签,特征值就是距离左侧得距离。标签就是投下去得到得分数。

2,选择预测点,和K个距离近得数。计算每个点得距离。

3.排序,前K个点得出现最多次标签得就是得分得大概率值。

#KNN算法是寻找K个距离最近的邻居,然后根据已知的邻居label,出现次数最多的,推断出测试点的类别。
# polinko 模拟
import numpy as np
import collections as c def KNN(k,predictPoint,feature,label):
# 先求出预测点与周围点的距离,然后排序,找出距离最近的k个点,出现最多的次数,就是预测结果。
# map内置函数(func,iterable)
distance = list(map(lambda x: abs(200 - x), feature))
# np.sort()是直接排序,而我们需要feature和labell联系一起
# print(np.sort(distance))
# 所以应该使用np.argsort()可以得到排序的后的index,可以与label关联
sort_index = np.argsort(distance)
# 通过切片找出K个最邻近的点
return c.Counter(label[sort_index][:k]).most_common(1)[0][0] # 返回的是(4,2),表示在k的最邻近元素,4出现最多次数为2 if __name__ == '__main__':
data = np.array([
[120, 3],
[140, 3],
[160, 3],
[40, 2],
[70, 2],
[200, 4],
[250, 4],
[100, 3]
])
feature = data[:,0]
label = data[:,-1]
k = 5
predictPoint = 170
print(KNN(k,predictPoint,feature,label))

 预测结果:

3 

代码中给出的数据集是随机写的,不一定准。

现在选择真实的数据集,通过numpy中loadtext()读取csv文本数据集。

np.loadtxt("data01.csv",delimiter=",")这个第一个参数文件名称,第二个delimiter是数据分割符.
然后就和后面一样,提取特征值和标签值,计算k个局里近的距离。
但是和真实的还有有差距,这个是怎么回事。
所以造成结果不正确的原因有这些:
还需要
1.调整参数,简称调参。
2.可能还有其他维度特征会影响结果,但是现在只给了一种特征值。

缺点:对于数据量很大得训练集合,耗费内存。对硬件要求较高。

机器学习之KNN---k最近邻算法-机器学习的更多相关文章

  1. 机器学习【一】K最近邻算法

    K最近邻算法 KNN 基本原理 离哪个类近,就属于该类   [例如:与下方新元素距离最近的三个点中,2个深色,所以新元素分类为深色] K的含义就是最近邻的个数.在sklearn中,KNN的K值是通过n ...

  2. 机器学习-K最近邻算法

    一.介绍 二.编程 练习一(K最近邻算法在单分类任务的应用): import numpy as np #导入科学计算包import matplotlib.pyplot as plt #导入画图工具fr ...

  3. 【算法】K最近邻算法(K-NEAREST NEIGHBOURS,KNN)

    K最近邻算法(k-nearest neighbours,KNN) 算法 对一个元素进行分类 查看它k个最近的邻居 在这些邻居中,哪个种类多,这个元素有更大概率是这个种类 使用 使用KNN来做两项基本工 ...

  4. 机器学习 Python实践-K近邻算法

    机器学习K近邻算法的实现主要是参考<机器学习实战>这本书. 一.K近邻(KNN)算法 K最近邻(k-Nearest Neighbour,KNN)分类算法,理解的思路是:如果一个样本在特征空 ...

  5. PCB 加投率计算实现基本原理--K最近邻算法(KNN)

    PCB行业中,客户订购5000pcs,在投料时不会直接投5000pcs,因为实际在生产过程不可避免的造成PCB报废, 所以在生产前需计划多投一定比例的板板, 例:订单 量是5000pcs,加投3%,那 ...

  6. 12、K最近邻算法(KNN算法)

    一.如何创建推荐系统? 找到与用户相似的其他用户,然后把其他用户喜欢的东西推荐给用户.这就是K最近邻算法的分类作用. 二.抽取特征 推荐系统最重要的工作是:将用户的特征抽取出来并转化为度量的数字,然后 ...

  7. 《算法图解》——第十章 K最近邻算法

    第十章    K最近邻算法 1 K最近邻(k-nearest neighbours,KNN)——水果分类 2 创建推荐系统 利用相似的用户相距较近,但如何确定两位用户的相似程度呢? ①特征抽取 对水果 ...

  8. [笔记]《算法图解》第十章 K最近邻算法

    K最近邻算法 简称KNN,计算与周边邻居的距离的算法,用于创建分类系统.机器学习等. 算法思路:首先特征化(量化) 然后在象限中选取目标点,然后通过目标点与其n个邻居的比较,得出目标的特征. 余弦相似 ...

  9. K最近邻算法项目实战

    这里我们用酒的分类来进行实战练习 下面来代码 1.把酒的数据集载入到项目中 from sklearn.datasets import load_wine #从sklearn的datasets模块载入数 ...

  10. 图说十大数据挖掘算法(一)K最近邻算法

    如果你之前没有学习过K最近邻算法,那今天几张图,让你明白什么是K最近邻算法. 先来一张图,请分辨它是什么水果 很多同学不假思索,直接回答:“菠萝”!!! 仔细看看同学们,这是菠萝么?那再看下边这这张图 ...

随机推荐

  1. Django中的get()和filter()区别

    前言 在django中,我们查询经常用的两个API中,会经常用到get()和filter()两个方法,两者的区别是什么呢? object.get()我们得到的是一个对象,如果在数据库中查不到这个对象或 ...

  2. pytest_用例运行级别_class级

    ''' 模块级(setup_module/teardown_module)开始于模块始末, 全局的在类中不起作用 类级(setup_class/teardown_class)只在类中前后运行一次(在 ...

  3. PHP抓取远程图片到本地保存(如何把错误信息用text文件写入)

    最近在工作中需要开发了一个用户素材功能,里面需要将网上的各种图片素材进行本地化存储.于是在网上找了一些相关资料,并根据自身开发需要,整理了一下主要的逻辑代码. /** * PHP将网页上的图片攫取到本 ...

  4. Hive date_add 和 date_diff 函数

    date_add 函数 例子:date_add('day',-1,current_date) date_diff 函数 例子:date_diff('day',cast(a.dt1 as timesta ...

  5. POI 讀取EXCEL

    /*** 獲取單元格數值* * @param cell* @return*/private String getCellValue(Cell cell) {String cellValue = &qu ...

  6. jmeter 导入csv数据中json格式数据取值不完整

    1.jmeter中添加csv数据文件时,数据是json格式 2.jmeter中执行取值发现只取了一部分 分析原因,json格式数据,中间有逗号,而csv是根据逗号来分割的,这回导致我们取值错位. 解决 ...

  7. SQL 交叉连接与内连接

    交叉连接 ,没有任何限制方式的连接. 叫做交叉连接. 碰到一种SQL 的写法. select * from  t1,t2 .     这其实是交叉连接 .   t1  是三条 ,  t2 是两条.  ...

  8. HTTP socket网络通信

    import socket class WebServer(): def __init__(self): ''' 1.创建总的socket 2.监听 :param self: :param addr: ...

  9. Oralce分页

    SELECT *FROM ( SELECT TMP_PAGE.*, ROWNUM ROW_ID FROM ( SELECT A . ID AS "id", A .bill_noti ...

  10. apache 安装配置 (centos)

    1. 使用yum包安装Apache软件 [root@Apache ~]# yum -y install httpd* [root@Apache ~]# rpm -qa | grep httpd --查 ...