Description

给出一棵n个节点的树,每个点有一个1~n的颜色

有m次操作,每次操作修改一个点的颜色
需要在每次操作后回答树上\(n^2\)条路径每条路径经过的颜色种类数和。

\(n,m<=400000\)

Solution

挺有意思的一个套路

首先我们单独计算每种颜色的贡献,对于每种颜色的点集分开考虑,我们需要计算至少经过了其中一个点的路径条数。
正难则反,考虑计算一个点都没经过的路径条数,那就是将点集删去后剩余连通块的大小平方和。

考虑这样一个模型
对于原本每种颜色有一个黑白两色的树,需要支持在某棵树上颜色翻转,求白连通块的大小平方和。
黑点总个数为n

如果只有一棵树,那很好办,直接用个LCT维护白连通块,对于每个点开个虚点连儿子即可。
但这里白点总个数是\(O(n^2)\)的

原题解给出了这样一个精妙的做法。(翻译一遍题解
先定一个树根

我们维护所有的黑连通块,每个黑连通块深度最浅的点的父亲记为这个连通块的顶点,(对于树根我们也开一个0号节点),显然顶点一定是白的。

LCT的时候,我们将顶点相同的所有节点看做在一个连通块内,事实上他们不一定连通。

现在对于每个节点都记录两个值,一个是连通块中的子树大小,一个是所有儿子的子树大小的平方和。
答案显然就是所有顶点的第二个值的和。

这样颜色反转时,我们只需要讨论这个点是黑点还是白点,黑点的话就cut父亲,显然这个点的信息不变,但这个点会成为顶点,因此更新答案。

白点的话就link父亲,此时父亲变成顶点,这个点的信息还是没变,只用修改父亲节点的值。

我们对于每种颜色都按照操作的时间顺序跑一遍,由于总操作数是\(O(m)\)的,因此总共需要用到的点数是\(O(n+m)\)的

我还没去写这道题,感觉具体可以把每种颜色操作一遍,然后回撤到下一种颜色的初始状态,这样总的操作次数仍然是\(O(n+m)\)的。

总的时间复杂度\(O((n+m)\log n)\)

【杂题】[CodeForces 1172E] Nauuo and ODT【LCT】【口胡】的更多相关文章

  1. Codeforces 1172E Nauuo and ODT [LCT]

    Codeforces ZROI那题是这题删掉修改的弱化版--ZROI还我培训费/px 思路 按照套路,我们考虑每种颜色的贡献,然后发现不包含某种颜色的路径条数更容易数,就是删掉该颜色的点后每个连通块大 ...

  2. CF 1172E Nauuo and ODT ——LCT

    题目:http://codeforces.com/contest/1172/problem/E LCT好题. 考虑对每个颜色求出 “不是该颜色的点组成的连通块的 siz2 之和” .每个颜色用 LCT ...

  3. 【CodeForces】1172E. Nauuo and ODT

    题解 看了一遍题解(以及代码)但是没写代码-- 后来做梦的时候忽然梦到了这道题--意识到我需要补一下-- 这道题就是,对于每种颜色,把没有染成这种颜色的点标成黑点,然后计算每个联通块的平方 然后每个点 ...

  4. CF1172E Nauuo and ODT LCT

    自己独立想出来的,超级开心 一开始想的是对于每一个点分别算这个点对答案的贡献. 但是呢,我们发现由于每一条路径的贡献是该路径颜色种类数,而每个颜色可能出现多次,所以这样就特别不好算贡献. 那么,还是上 ...

  5. [OI笔记]杂题整理1(基础篇~)

    算是开学第四周啦,之前的三周大概过了一遍基础图论和数学相关的内容.这篇随笔打算口胡一些近期做感觉比较好的数学相关的题目 因为这段时间主要是看紫书学的,所以其实会有些出自UVA的例题,如果需要题目但是觉 ...

  6. Codeforces 杂题集 2.0

      记录一些没有写在其他随笔中的 Codeforces 杂题, 以 Problemset 题号排序   1326D2 - Prefix-Suffix Palindrome (Hard version) ...

  7. Atcoder&CodeForces杂题11.7

    Preface 又自己开了场CF/Atcoder杂题,比昨天的稍难,题目也更有趣了 昨晚炉石检验血统果然是非洲人... 希望这是给NOIP2018续点rp吧 A.CF1068C-Colored Roo ...

  8. 【CF1172E】Nauuo and ODT(Link-Cut Tree)

    [CF1172E]Nauuo and ODT(Link-Cut Tree) 题面 CF 给你一棵树,每个节点有一个颜色. 定义一条路径的权值为路径上不同颜色的数量.求所有有向路径的权值和. 有\(m\ ...

  9. CF1172E Nauuo and ODT

    CF1172E Nauuo and ODT 神仙题orz 要算所有路径的不同颜色之和,多次修改,每次修改后询问. 对每种颜色\(c\)计算多少条路径包含了这个颜色,不好算所以算多少条路径不包含这个颜色 ...

随机推荐

  1. [转帖]国产CPU性能最全盘点 宜良性竞争优胜劣汰

    国产CPU性能最全盘点 宜良性竞争优胜劣汰 电子工程专辑的网站内容 其实里面说的不尽全面 比如龙芯和申威就放到一块了 一个是 MIPS 一个是Alpha 明显不一样的东西 x86的应该都不行 而且. ...

  2. 数据结构之二叉树篇卷四 -- 二叉树线索化(With Java)

    一.线索二叉树简介 二叉树本身是一种非线性结构,然而当你对二叉树进行遍历时,你会发现遍历结果是一个线性序列.这个序列中的节点存在前驱后继关系.因此,如何将这种前驱后继信息赋予给原本的二叉树呢?这就是二 ...

  3. Entity Framework常用方法及案例

    ⒈Skip(int count) 说明:跳过集合的前n个元素:延迟.即我们跳过给定的数目返回后面的结果集. ⒉Take(int count) 说明:获取集合的前n个元素:延迟.即只返回限定数量的结果集 ...

  4. Java回调实现异步

    在正常的业务中使用同步线程,如果服务器每处理一个请求,就创建一个线程的话,会对服务器的资源造成浪费.因为这些线程可能会浪费时间在等待网络传输,等待数据库连接等其他事情上,真正处理业务逻辑的时间很短很短 ...

  5. 【笔记】vue实现简单项目和页面跳转

    此项目适合不会前端,不会vue的人. 不会vue真正的开发,这里用vue和vant-ui简单搭一个商城app的tabbar和页面跳转. 装vue-cli3.0 根据官网快速上手搭建vant项目,官网 ...

  6. docker 配置私有仓库

    1.使用docker 命令: 1.准备两台虚拟机,这里使用的是centos7,两台使用yum install docker 安装docker; 2.给两台虚拟机设置固定ip: 进入到虚拟机内 敲入命令 ...

  7. 学会这 2 点,轻松看懂 MySQL 慢查询日志

    MySQL中的日志包括:错误日志.二进制日志.通用查询日志.慢查询日志等等.这里主要介绍下比较常用的两个功能:通用查询日志和慢查询日志. 1)通用查询日志:记录建立的客户端连接和执行的语句. 2)慢查 ...

  8. 使用fiddler进程弱网测试

    使用fiddler手机需调整所连网络代理模式为手动,主机名与端口改为与电脑相同 打开Fiddler,Rules(规则)->Performance(性能)->勾选 Simulate Mode ...

  9. todo 看看堆栈里的东西

    类变量,成员变量,静态方法里的变量.参数,成员方法里的变量,参数

  10. linux无界面模式安装selenium+chrome+chromedriver并成功完成脚本(亲测可用)

    环境:docker centos 7.4 能通外网 写好的selenium脚本. 具体步骤: 一:安装selenium  这是最简单的 直接利用 pip3 install selenium 二 安装c ...