Codeforces 631E 斜率优化
题意:给你一个数组,你可以选择数组中的一个数,把它插入数组的其它位置,问∑ i * a[i]的最大值为多少?
思路:设dp[i]表示把第i个数向左边插入可以获得的最大增量,我们假设向左边插入,设插入的位置是j,当前位置是i,那么变化为sum[i - 1] - sum[j - 1] - (i - j) * a[i], 将式子转化,sum[j - 1] = a[i] * j - dp[i] + sum[i - 1] - i * a[i],我们要让dp[i]最大,即让-dp[i]最小,用单调队列维护下凸壳,查询的时候二分斜率即可。向右边插入同理。
代码:
#include <bits/stdc++.h>
#define LL long long
using namespace std;
const int maxn = 200010;
LL q[maxn], l, r;
LL a[maxn], sum[maxn];
LL dp[maxn];
int binary_search(LL k) {
if(r == l) return q[l];
int L = l, R = r;
while(L < R) {
int mid = (L + R) >> 1;
int tmp = q[mid], tmp1 = q[mid + 1];
if(sum[tmp1 - 1] - sum[tmp - 1] <= k * (tmp1 - tmp)) L = mid + 1;
else R = mid;
}
return q[L];
}
int binary_search1(LL k) {
if(r == l) return q[l];
int L = l, R = r;
while(L < R) {
int mid = (L + R) >> 1;
int tmp = q[mid], tmp1 = q[mid + 1];
if(sum[tmp1] - sum[tmp] <= k * (tmp1 - tmp)) L = mid + 1;
else R = mid;
}
return q[L];
}
int main() {
int n;
LL res = 0;
scanf("%d", &n);
for (int i = 1; i <= n; i++) {
scanf("%lld", &a[i]);
sum[i] = sum[i - 1] + a[i];
res = res + a[i] * i;
}
l = 1, r = 1, q[l] = 1, dp[1] = 0;
for (LL i = 2; i <= n; i++) {
int pos = binary_search(a[i]);
dp[i] = sum[i - 1] - sum[pos - 1] - (i - pos) * a[i];
while(l < r && (sum[q[r] - 1] - sum[q[r - 1] - 1]) * (i - q[r - 1]) >= (sum[i - 1] - sum[q[r - 1] - 1]) * (q[r] - q[r - 1]))r--;
q[++r] = i;
}
LL ans = -5e18;
for (int i = 1; i <= n; i++)
ans = max(ans, res + dp[i]);
l = 1, r = 1, q[1] = n;
dp[n] = 0;
for (LL i = n - 1; i >= 1; i--) {
int pos = binary_search1(a[i]);
dp[i] = sum[i] - sum[pos] - (i - pos) * a[i];
while(l < r && (sum[q[r - 1]] - sum[i]) * (q[r] - i) <= (sum[q[r]] - sum[i]) * (q[r - 1] - i))r--;
q[++r] = i;
}
for (int i = 1; i <= n; i++)
ans = max(ans, res + dp[i]);
ans = max(ans, res);
printf("%lld\n", ans);
}
Codeforces 631E 斜率优化的更多相关文章
- Codeforces 631E Product Sum 斜率优化
我们先把问题分成两部分, 一部分是把元素往前移, 另一部分是把元素往后移.对于一个 i 后的一个位置, 我们考虑前面哪个移到这里来最优. 我们设最优值为val, val = max(a[ j ] ...
- Codeforces 1067D - Computer Game(矩阵快速幂+斜率优化)
Codeforces 题面传送门 & 洛谷题面传送门 好题. 首先显然我们如果在某一次游戏中升级,那么在接下来的游戏中我们一定会一直打 \(b_jp_j\) 最大的游戏 \(j\),因为这样得 ...
- Codeforces 660F Bear and Bowling 4 斜率优化 (看题解)
Bear and Bowling 4 这也能斜率优化... max[ i ] = a[ i ] - a[ j ] - j * (sum[ i ] - sum[ j ])然后就能斜率优化啦, 我咋没想到 ...
- Codeforces 643C Levels and Regions 斜率优化dp
Levels and Regions 把dp方程列出来, 把所有东西拆成前缀的形式, 就能看出可以斜率优化啦. #include<bits/stdc++.h> #define LL lon ...
- Codeforces 311B Cats Transport 斜率优化dp
Cats Transport 出发时间居然能是负的,我服了... 卡了我十几次, 我一直以为斜率优化写搓了. 我们能得出dp方程式 dp[ i ][ j ] = min(dp[ k ][ j - 1 ...
- Codeforces Round #189 (Div. 1) C - Kalila and Dimna in the Logging Industry 斜率优化dp
C - Kalila and Dimna in the Logging Industry 很容易能得到状态转移方程 dp[ i ] = min( dp[ j ] + b[ j ] * a[ i ] ) ...
- CodeForces - 660F:Bear and Bowling 4(DP+斜率优化)
Limak is an old brown bear. He often goes bowling with his friends. Today he feels really good and t ...
- Codeforces Round #344 (Div. 2) E. Product Sum 二分斜率优化DP
E. Product Sum Blake is the boss of Kris, however, this doesn't spoil their friendship. They often ...
- CodeForces 311 B Cats Transport 斜率优化DP
题目传送门 题意:现在有n座山峰,现在 i-1 与 i 座山峰有 di长的路,现在有m个宠物, 分别在hi座山峰,第ti秒之后可以被带走,现在有p个人,每个人会从1号山峰走到n号山峰,速度1m/s.现 ...
随机推荐
- 虚拟机设置静态IP地址
前言 NAT连接方式只能配置一次,配置好子网掩码和网关IP后,虚拟机NAT连接的ip段都是同一个ip段 1.菜单栏选择 编辑 -> 虚拟网络编辑器,打开虚拟网络编辑器对话框,选择Vmnet8 N ...
- c++后台开发面试常见知识点总结(三)操作系统
静态链接库和动态链接库的区别 一个进程可以通过调用waitpid函数来等待它的子进程终止或者停止 Debug和Release的区别 临界区互斥量信号量事件进程互斥与同步 进程有哪几种状态,状态转换图, ...
- 数据结构---Java---HashMap---JDK1.7
源码解读 public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Clone ...
- double中首字母大写与小写的区别
Double 是类 double是基础数据类型.Double类型是double的包装类.Double 和double之间的相互转化称为自动拆箱和自动装箱.如果从对象角度理解,那么Double就是对象, ...
- leetcode-165周赛-1277-统计全为1的正方形子矩阵
题目描述: 自己的提交: class Solution: def countSquares(self, matrix: List[List[int]]) -> int: if not matri ...
- 【纪中集训】2019.08.02【NOIP提高组】模拟 A 组TJ
\(\newcommand{\RNum}[1]{\uppercase\expandafter{\romannumeral #1\relax}}\) T1 一道可以暴力撵标算的题-- Descripti ...
- <Jmeter入门不放弃>之<3.两种常见录制脚本的方法>
关于录制,我想表达的是,并不要以为他很低端,解决需求才是王道,大家这里参考学习的时候,我就不在这里配截图了,因为需要你打开工具根据文档自己去找,才有印象,大家一定要启动JMeter!跟着理解操作 录制 ...
- jquery+javascript触发a标签的点击事件
今天项目经理跟我说window.open()在一些浏览器上会被拦截,当时的解决方案是:用a标签的target="_blank"属性也可以打开窗体页面 于是解决了A问题出现了B问题: ...
- Android 架构师技能图谱
# Android 架构师技能图谱 ## 架构与设计 - 设计模式 - 重构 - 技术选型 - 特性 - 可用性 - 性能 - 包大小 - 方法数 - 文档 - 技术支持 - UI架构模式 - MVC ...
- 如何用python读写CSV 格式文件
工作中经常会碰到读写CSV文件的情况.记录下,方便自己以后查询并与大家一起分享: 写CSV文件方法一: import csv #导入CSV with open("D:\eg ...