题目大意:给你一个数n,把它分解为素数的幂次的乘积的形式:n=p1^e1 * p2^e2 * .......pk^ek  求最小的幂次是多少

n=le18

分析:

首先我们肯定是不可以枚举1e18的因子的,因为sqrt(1e18)=1e9 ,这样铁超时,那么1s的时间我们是可以预处理出10000以内的素数,我们首先得意思到n在10000以后的素数的幂都不可能大于5了,这很好理解(10001)^5>1e18 , 所以我们可以先用10000以内的素数算出一个最小幂 和剩余数Y, 在枚举看看后面可不可能出来4,3,2,1的幂; 这也很容易寻找,(Y^(1/4))^4==Y,就说明有4的幂 , 3,2,1同理,需要注意,在枚举3的幂的时候,sqrt()的精度会不行,所以需要二分逼近一下

注意一点:对于后面的情况只会出现  a^1*b^2    a^1*b^3  a^2  a^3  a^4   所以我们只要判断 a^2  a^3  a^4这种情况,其他都是1

#include<bits/stdc++.h>
using namespace std;
#define ll long long
ll pr[];
bool vis[];
int tot;
void init(){
for(int i=;i<;i++){
if(vis[i]==){
pr[++tot]=i;
for(int j=i*;j<;j+=i)
vis[j]=;
}
}
}
bool fun(ll n){
ll l=,r=pow(n*1.0,1.0/3.0)+;
while(l<=r){
ll mid=(l+r)>>;
if(mid*mid*mid==n) return ;
else if(mid*mid*mid>n) r=mid-;
else l=mid+;
}
return ;
}
int main(){
init();
int _; scanf("%d",&_);
while(_--){
ll n;
scanf("%lld",&n);
int ans=0x3f3f3f3f; for(int i=;i<=tot;i++){
if(pr[i]>n) break; int x=;
while(n%pr[i]==){
n/=pr[i];
x++;
}
if(x!=)
ans=min(ans,x);
}
// cout<<n<<endl;
if(n==||ans==) printf("%d\n",ans);
else {
ll m1=(ll)sqrt(sqrt(n*1.0)*1.0);
ll m2=(ll)sqrt(n*1.0);
if(m1*m1*m1*m1==n) ans=min(ans,);
else if(fun(n)) ans=min(ans,);
else if(m2*m2==n) ans=min(ans,);
else ans=;
printf("%d\n",ans);
}
}
}

HDU6623 思维题(n分解成质因子的形式,问最小的幂是多少)的更多相关文章

  1. 【C/C++】任意大于1的整数分解成素数因子乘积的形式

    // #include<stdio.h> #include<math.h> #include<malloc.h> int isprime(long n); void ...

  2. cf822D(质因子)

    题目链接: http://codeforces.com/problemset/problem/822/D 题意: 输入 t, l, r 求 t0·f(l) + t1·f(l + 1) + ... +  ...

  3. POJ2992:Divisors(求N!因子的个数,乘性函数,分解n!的质因子(算是找规律))

    题目链接:http://poj.org/problem?id=2992 题目要求:Your task in this problem is to determine the number of div ...

  4. 整数(质因子)分解(Pollard rho大整数分解)

    整数分解,又称质因子分解.在数学中,整数分解问题是指:给出一个正整数,将其写成几个素数的乘积的形式. (每个合数都可以写成几个质数相乘的形式,这几个质数就都叫做这个合数的质因数.) .试除法(适用于范 ...

  5. hdu6237 分解质因子

    题意:给一堆石子,每次移动一颗到另一堆,要求最小次数使得,所有石子数gcd>1 题解:枚举所有质因子,然后找次数最小的那一个,统计次数时,我们可以事先记录下每堆石子余质因子 的和,对所有石子取余 ...

  6. Codeforces Round #828 (Div. 3) E2. Divisible Numbers (分解质因子,dfs判断x,y)

    题目链接 题目大意 给定a,b,c,d四个数,其中a<c,b<c,现在让你寻找一对数(x,y),满足一下条件: 1. a<x<c,b<y<d 2. (x*y)%(a ...

  7. UVA 10780 Again Prime? No Time. 分解质因子

    The problem statement is very easy. Given a number n you have to determine the largest power of m,no ...

  8. HDU 4497 GCD and LCM(分解质因子+排列组合)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4497 题意:已知GCD(x, y, z) = G,LCM(x, y, z) = L.告诉你G.L,求满 ...

  9. HDU 4135 Co-prime (容斥+分解质因子)

    <题目链接> 题目大意: 给定区间[A,B](1 <= A <= B <= 10 15)和N(1 <=N <= 10 9),求出该区间中与N互质的数的个数. ...

随机推荐

  1. 文件的三种打开方式及with管理文件上下文

    文件的三种打开方式及with管理文件上下文 一.文件的三种打开方式 1.1 只读 f = open(r'D:\pycharm\yjy\上海python学习\456.txt','r',encoding= ...

  2. python中魔法方法__str__与__repr__的区别

    提出问题 当我们自定义一个类时,打印这个类对象或者在交互模式下直接输入这个类对象按回车,默认显示出来的信息好像用处不大.如下所示 In [1]: class People: ...: def __in ...

  3. php之CGI、FastCGI、php-fpm运行原理

    学好一门语言,必须懂得他得运行原理,php之CGI.FastCGI.php-fpm运行原理 早期的webserver只处理html等静态文件,但是随着技术的发展,出现了像php等动态语言.webser ...

  4. zuul开发实战(限流,超时解决)

    什么是网关 API Gateway,是系统的唯一对外的入口,介于客户端和服务器端之间的中间层,处理非业务功能 提供路由请求.鉴权.监控.缓存.限流等功能 统一接入 * 智能路由 * AB测试.灰度测试 ...

  5. java实现spark常用算子之cartesian

    import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.a ...

  6. centos python environment

    3. 在Centos7的docker里装好了httpd,运行报错: $ systemctl start httpd.service Failed to get D-Bus connection: Op ...

  7. redis之使用场景

    随着数据量的增长,MySQL 已经满足不了大型互联网类应用的需求.因此,Redis 基于内存存储数据,可以极大的提高查询性能,对产品在架构上很好的补充.在某些场景下,可以充分的利用 Redis 的特性 ...

  8. 机器学习-回归中的相关度和R平方值

    1. 皮尔逊相关系数(Pearson Correlation Coefficient) 1.1 衡量两个值线性相关强度的量 1.2 取值范围[-1, 1] 正相关:>0, 负相关:<0, ...

  9. 从零开始学MySQL(三)

    经过上两节的洗礼,我们能够连接上服务器,并成功地进入与mysql交互的会话中了.那么现在就可以发起SQL语句,让服务器来执行它了!这听起来很酷吧?接下来,我们开始学习MySQL的相关知识. 本文概览: ...

  10. navicat修改表的主键自增长报错

    这周自己在构思一个项目的表的设计,由于是第一次,所以走了很多弯路,也遇到了几个问题,这里暂时贴上来. 我用PowerDesign设计出一部分关联表的ER图之后,导出了sql文件之后用navicat导入 ...