PP: Deep r -th Root of Rank Supervised Joint Binary Embedding for Multivariate Time Series Retrieval
from: Dacheng Tao 悉尼大学
PROBLEM:
time series retrieval: given the current multivariate time series segment, how to obtain its relevant time series segments in the historical data.
Two challenging:
1. it requires a compact representation of the raw time series, which can explicitly encode the temporal dynamics as well as the correlations (interactions) between different pairs of time series.
2. 查询相似结果的快速性和准确性。
Compact representation: temporal dynamics + correlations
INTRODUCTION:
问题定义: given the current multivariate time series segment, i.e., a slice of multivariate time series which lasts for a short period of time, we aim to find its most similar time series segments in the historical data (or database).
A supervised multivariate time series retrieval problem. label information is available in historical data.
other methods: discrete Fourier transform; discrete wavelet transform; piecewise aggregate approximation; 但是这些方法仅仅针对univariate time series representation and ignore the correlations between different pairs.
?? 不同序列间的相关性也要compact?? 由于是一个窗口内的multivariate time series, 需要衡量他们之间的correlation.
time serie作为一个独立的个体,如果想研究他们之间的correlations:
1. time series ----> compact representation -----> correlations
2. time series ----> correlation -----> compact representation
To speed up the expensive similarity search。
purpose: multivariate time series retrieval.
input: a raw multivariate time series segment
steps:
- employ lstm units to encode the temporal dynamics
- use cnn to encode the correlations between different pairs of ts
- generated two separate feature vectors from the first two steps.
- two separate feature vectors ----> a joint binary embedding
- calculate the similarity between two multivariate ts segments in Hamming space.
- r-th root ranking loss to train the disciplined embedding functions.
DEEP r-TH ROOT OF RANK SUPERVISED JOINT BINARY EMBEDDING
1. multivariate time series ----> lstm -----> the last hidden state ht
2. multivariate time series ---> correlation matrix -----> cnn ------> fully connected layer, l
3. joint binary embedding: y = [ht, l]; hash function/ embedding ----> Hv
4. 相比于pairwise similarities,我们使用了segment similarities in the form of triplets. {(Xq,Xi,Xj)}
yq: a query segment, yi: similar segment; yj: dissimilar segment;
就我目前看来,只是根据r-th ranking loss进行了训练,输入是{(Xq,Xi,Xj)}。但是最终如何检索的,还是不知道。
EXPERIMENTS
To measure the effectiveness of various binary embedding techniques for multivariate time series retrieval, we consider three evaluation metrics, i.e., Mean Average Precision (MAP), precision at top-k positions (Precision@k), and recall at top-k positions (Recall@k).
结果看起来很不错。
SUPPLEMENTARY KNOWLEDGE:
1. hamming distance: 是两个字符串对应位置的不同字符的个数。
例如:
- 10101与10101之间的汉明距离是2。
- 2396与2396之间的汉明距离是3。
- "toned"与"roses"之间的汉明距离是3。
2. triplet loss
Triplet loss is a loss function for artificial neural networks where a baseline (anchor) input is compared to a positive (truthy) input and a negative (falsy) input. The distance from the baseline (anchor) input to the positive (truthy) input is minimized, and the distance from the baseline (anchor) input to the negative (falsy) input is maximized.[1][2]
PP: Deep r -th Root of Rank Supervised Joint Binary Embedding for Multivariate Time Series Retrieval的更多相关文章
- PP: Deep clustering based on a mixture of autoencoders
Problem: clustering A clustering network transforms the data into another space and then selects one ...
- PP: Robust Anomaly Detection for Multivariate Time Series through Stochastic Recurrent Neural Network
PROBLEM: OmniAnomaly multivariate time series anomaly detection + unsupervised 主体思想: input: multivar ...
- 基于图嵌入的高斯混合变分自编码器的深度聚类(Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph Embedding, DGG)
基于图嵌入的高斯混合变分自编码器的深度聚类 Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph Embedd ...
- PP: Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data
From: Stanford University; Jure Leskovec, citation 6w+; Problem: subsequence clustering. Challenging ...
- HDU 3966(树链剖分+点修改+点查询)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3966 题目大意:营地的分布成树型.每个营地都有一些人,每次修改修改一条链上的所有营地的人数,每次查询单 ...
- 108. Convert Sorted Array to Binary Search Tree (building tree with resursion)
Given an array where elements are sorted in ascending order, convert it to a height balanced BST. Fo ...
- 论文翻译:2020_DCCRN: Deep Complex Convolution Recurrent Network for Phase-Aware Speech Enhancement
论文地址:DCCRN:用于相位感知语音增强的深度复杂卷积循环网络 论文代码:https://paperswithcode.com/paper/dccrn-deep-complex-convolutio ...
- Awesome Deep Vision
Awesome Deep Vision A curated list of deep learning resources for computer vision, inspired by awes ...
- 【HDOJ】5096 ACM Rank
Treap+set仿函数重定义.每当ac一道题目时,相当于对总时间减去一个大数. /* 5096 */ #include <iostream> #include <string> ...
随机推荐
- 初窥ECharts
近来趁着空闲时间了解了一下 ECharts.也顺带记录一番. 首先要从下载ECharts库,这个从官网可以直接下载. 引入ECharts.JS <head> <meta charse ...
- 【Flutter】Demo1一个名字生成器
根据官网的例子敲的~效果还是很棒的! 首先导入一个第三方包,可以用来随机生成单词组合 在 pubsepec.yaml下添加如下语句 dependencies: flutter: sdk: flutte ...
- bootstrap234的ie兼容选择
如果你需要兼容IE8甚至是IE7和IE6,那么只能选择Bootstrap2,虽然它自身在IE6的效果也并不完美.如果需要兼容IE678的话用2.如果需要高版本的浏览器,并且移动端优先的话,那么用boo ...
- SPFA的优化一览
目录 序 内容 嵬 序 spfa,是一个早已没人用的算法,就像那些麻木的人, 可谁有知道,他何时槃涅 一个已死的算法 ,重生 内容 关于\(NOI2018D1T1\)的惨案,为了以防spfa被卡. 关 ...
- tcp客户端从服务器下载文本文件
代码讲解: server import socket def send_file_client(new_client_socket, new_client_addr): # 接收客户端需要下载的文件名 ...
- STL入门学习中碰到的一些函数
2020.02.10 fill #include<algorithm> vector<int> v{ 1, 2, 3, 3 }; fill(v.begin(), v.end() ...
- DoraBox sql注入&文件上传
SQL注入 1.sqli数字型 判断是否存在注入点,执行1 and 1=1,有回显判断存在注入点 判断字段数,执行1 order by 3以及执行1 order by 4时报错,判断字段数为3 判断具 ...
- 从接口自动化测试框架设计到开发(二)操作json文件、重构json工具类
用例模板里的请求数据多,看起来很乱,所以可以通过访问另外一个文件的方式获取请求数据 把请求数据都放在一个json文件中 取出login的内容: import json fp = open('G:/un ...
- 树莓派pip安装opencv报错,Could not find a version that satisfies the requirement cv2 (from versions: )No matching distribution found for cv2
前言 我在使用pip install opencv-python 时报错 Could not find a version that satisfies the requirement opencv ...
- 安装Logstash到linux(源码)
运行环境 系统版本:CentOS Linux release 7.3.1611 (Core) 软件版本:logstash-7.1.0 硬件要求:最低2核4GB 安装过程 1.源码安装JDK 1.1.从 ...