from: Dacheng Tao 悉尼大学

PROBLEM:

time series retrieval: given the current multivariate time series segment, how to obtain its relevant time series segments in the historical data.

Two challenging:

1. it requires a compact representation of the raw time series, which can explicitly encode the temporal dynamics as well as the correlations (interactions) between different pairs of time series.

2. 查询相似结果的快速性和准确性。

Compact representation: temporal dynamics + correlations

INTRODUCTION:

问题定义: given the current multivariate time series segment, i.e., a slice of multivariate time series which lasts for a short period of time, we aim to find its most similar time series segments in the historical data (or database).

A supervised multivariate time series retrieval problem. label information is available in historical data.

other methods: discrete Fourier transform; discrete wavelet transform; piecewise aggregate approximation; 但是这些方法仅仅针对univariate time series representation and ignore the correlations between different pairs.

?? 不同序列间的相关性也要compact?? 由于是一个窗口内的multivariate time series, 需要衡量他们之间的correlation.

time serie作为一个独立的个体,如果想研究他们之间的correlations:

1. time series ----> compact representation -----> correlations

2. time series ----> correlation -----> compact representation

To speed up the expensive similarity search。

purpose: multivariate time series retrieval.

input: a raw multivariate time series segment

steps:

  1. employ lstm units to encode the temporal dynamics
  2. use cnn to encode the correlations between different pairs of ts
  3. generated two separate feature vectors from the first two steps.
  4. two separate feature vectors ----> a joint binary embedding
  5. calculate the similarity between two multivariate ts segments in Hamming space.
  6. r-th root ranking loss to train the disciplined embedding functions.

DEEP r-TH ROOT OF RANK SUPERVISED JOINT BINARY EMBEDDING

1. multivariate time series ----> lstm -----> the last hidden state ht

2. multivariate time series ---> correlation matrix -----> cnn ------> fully connected layer, l

3. joint binary embedding: y = [ht, l]; hash function/ embedding ----> Hv

4. 相比于pairwise similarities,我们使用了segment similarities in the form of triplets. {(Xq,Xi,Xj)}

yq: a query segment, yi: similar segment; yj: dissimilar segment;

就我目前看来,只是根据r-th ranking loss进行了训练,输入是{(Xq,Xi,Xj)}。但是最终如何检索的,还是不知道。

EXPERIMENTS

To measure the effectiveness of various binary embedding techniques for multivariate time series retrieval, we consider three evaluation metrics, i.e., Mean Average Precision (MAP), precision at top-k positions (Precision@k), and recall at top-k positions (Recall@k).

结果看起来很不错。

SUPPLEMENTARY KNOWLEDGE:

1. hamming distance: 是两个字符串对应位置的不同字符的个数。

例如:

  • 1010110101之间的汉明距离是2。
  • 23962396之间的汉明距离是3。
  • "toned"与"roses"之间的汉明距离是3。

2. triplet loss

Triplet loss is a loss function for artificial neural networks where a baseline (anchor) input is compared to a positive (truthy) input and a negative (falsy) input. The distance from the baseline (anchor) input to the positive (truthy) input is minimized, and the distance from the baseline (anchor) input to the negative (falsy) input is maximized.[1][2]

PP: Deep r -th Root of Rank Supervised Joint Binary Embedding for Multivariate Time Series Retrieval的更多相关文章

  1. PP: Deep clustering based on a mixture of autoencoders

    Problem: clustering A clustering network transforms the data into another space and then selects one ...

  2. PP: Robust Anomaly Detection for Multivariate Time Series through Stochastic Recurrent Neural Network

    PROBLEM: OmniAnomaly multivariate time series anomaly detection + unsupervised 主体思想: input: multivar ...

  3. 基于图嵌入的高斯混合变分自编码器的深度聚类(Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph Embedding, DGG)

    基于图嵌入的高斯混合变分自编码器的深度聚类 Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph Embedd ...

  4. PP: Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data

    From: Stanford University; Jure Leskovec, citation 6w+; Problem: subsequence clustering. Challenging ...

  5. HDU 3966(树链剖分+点修改+点查询)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3966 题目大意:营地的分布成树型.每个营地都有一些人,每次修改修改一条链上的所有营地的人数,每次查询单 ...

  6. 108. Convert Sorted Array to Binary Search Tree (building tree with resursion)

    Given an array where elements are sorted in ascending order, convert it to a height balanced BST. Fo ...

  7. 论文翻译:2020_DCCRN: Deep Complex Convolution Recurrent Network for Phase-Aware Speech Enhancement

    论文地址:DCCRN:用于相位感知语音增强的深度复杂卷积循环网络 论文代码:https://paperswithcode.com/paper/dccrn-deep-complex-convolutio ...

  8. Awesome Deep Vision

    Awesome Deep Vision  A curated list of deep learning resources for computer vision, inspired by awes ...

  9. 【HDOJ】5096 ACM Rank

    Treap+set仿函数重定义.每当ac一道题目时,相当于对总时间减去一个大数. /* 5096 */ #include <iostream> #include <string> ...

随机推荐

  1. leetcode-简单-栈-有效的括号

    给定一个只包括 '(',')','{','}','[',']' 的字符串,判断字符串是否有效. 有效字符串需满足:  左括号必须用相同类型的右括号闭合. 左括号必须以正确的顺序闭合. 注意空字符串可被 ...

  2. 如何在 vue 中添加权限控制管理?---vue中文社区

    前言 在一个项目中,一些功能会涉及到重要的数据管理,为了确保数据的安全,我们会在项目中加入权限来限制每个用户的操作.作为前端,我们要做的是配合后端给到的权限数据,做页面上的各种各样的限制. 需求 因为 ...

  3. LeetCode 面试题 02.07. 链表相交

    题目链接:https://leetcode-cn.com/problems/intersection-of-two-linked-lists-lcci/ 给定两个(单向)链表,判定它们是否相交并返回交 ...

  4. 初识OpenSSH--1

    note:保护你的报文(communique)安全 !  最安全!!! 简介:OpenSSH使用SSH协议进行远程登录的主要连接工具.它对传输数据进行加密,以消除窃听,连接劫持和其他攻击.此外,Ope ...

  5. Java连载87-酒店管理系统练习、哈希表、函数

    一.创建一个酒店的房间管理系统 需求:这个酒店有五层,并且1-2层是标准间,3-4层是双人间,5层是豪华间:我们需要实时的显现各个房间的使用状态,并且我们可以预定某一个房间. package com. ...

  6. jQuery---on注册事件的2种方式

    on注册事件的2种方式 on注册事件的语法 on注册简单事件 // 这个是p自己注册的事件(简单事件) $("p").on("click", function ...

  7. opencv —— morphologyEx 开运算、闭运算、形态学梯度、顶帽、黑帽

    开运算:先腐蚀后膨胀. 能够排除小亮点. 闭运算:先膨胀后腐蚀. 能够排除小黑点. 形态学梯度:膨胀图 — 腐蚀图. 对二值图像进行这一操作,可将图块的边缘突出出来,故可用来保留物体边缘轮廓. 顶帽: ...

  8. sql多字段分组排序显示全部数据

    建表sql CREATE TABLE `tbl_demo` ( `id` ) COLLATE utf8_bin NOT NULL, `payer_name` ) COLLATE utf8_bin DE ...

  9. [CF1311F] Moving Points - 树状数组

    Solution 按 \(x\) 关键字升序排序,依次枚举每个点 考虑对任意 \(x_j < x_i\),那么当 \(v_j \leq v_i\) 时,它们不会相交,且 \(dis\) 就是它们 ...

  10. PHP0010:PHP操作mysql

    cmd中清除之前的记录 cmd操作数据库的步骤: php 到 mysql的并发数 15个左右 for循环是要知道起点和终点 foreach是从结果集中取数据 而while可遍历自然结果集