from: Dacheng Tao 悉尼大学

PROBLEM:

time series retrieval: given the current multivariate time series segment, how to obtain its relevant time series segments in the historical data.

Two challenging:

1. it requires a compact representation of the raw time series, which can explicitly encode the temporal dynamics as well as the correlations (interactions) between different pairs of time series.

2. 查询相似结果的快速性和准确性。

Compact representation: temporal dynamics + correlations

INTRODUCTION:

问题定义: given the current multivariate time series segment, i.e., a slice of multivariate time series which lasts for a short period of time, we aim to find its most similar time series segments in the historical data (or database).

A supervised multivariate time series retrieval problem. label information is available in historical data.

other methods: discrete Fourier transform; discrete wavelet transform; piecewise aggregate approximation; 但是这些方法仅仅针对univariate time series representation and ignore the correlations between different pairs.

?? 不同序列间的相关性也要compact?? 由于是一个窗口内的multivariate time series, 需要衡量他们之间的correlation.

time serie作为一个独立的个体,如果想研究他们之间的correlations:

1. time series ----> compact representation -----> correlations

2. time series ----> correlation -----> compact representation

To speed up the expensive similarity search。

purpose: multivariate time series retrieval.

input: a raw multivariate time series segment

steps:

  1. employ lstm units to encode the temporal dynamics
  2. use cnn to encode the correlations between different pairs of ts
  3. generated two separate feature vectors from the first two steps.
  4. two separate feature vectors ----> a joint binary embedding
  5. calculate the similarity between two multivariate ts segments in Hamming space.
  6. r-th root ranking loss to train the disciplined embedding functions.

DEEP r-TH ROOT OF RANK SUPERVISED JOINT BINARY EMBEDDING

1. multivariate time series ----> lstm -----> the last hidden state ht

2. multivariate time series ---> correlation matrix -----> cnn ------> fully connected layer, l

3. joint binary embedding: y = [ht, l]; hash function/ embedding ----> Hv

4. 相比于pairwise similarities,我们使用了segment similarities in the form of triplets. {(Xq,Xi,Xj)}

yq: a query segment, yi: similar segment; yj: dissimilar segment;

就我目前看来,只是根据r-th ranking loss进行了训练,输入是{(Xq,Xi,Xj)}。但是最终如何检索的,还是不知道。

EXPERIMENTS

To measure the effectiveness of various binary embedding techniques for multivariate time series retrieval, we consider three evaluation metrics, i.e., Mean Average Precision (MAP), precision at top-k positions (Precision@k), and recall at top-k positions (Recall@k).

结果看起来很不错。

SUPPLEMENTARY KNOWLEDGE:

1. hamming distance: 是两个字符串对应位置的不同字符的个数。

例如:

  • 1010110101之间的汉明距离是2。
  • 23962396之间的汉明距离是3。
  • "toned"与"roses"之间的汉明距离是3。

2. triplet loss

Triplet loss is a loss function for artificial neural networks where a baseline (anchor) input is compared to a positive (truthy) input and a negative (falsy) input. The distance from the baseline (anchor) input to the positive (truthy) input is minimized, and the distance from the baseline (anchor) input to the negative (falsy) input is maximized.[1][2]

PP: Deep r -th Root of Rank Supervised Joint Binary Embedding for Multivariate Time Series Retrieval的更多相关文章

  1. PP: Deep clustering based on a mixture of autoencoders

    Problem: clustering A clustering network transforms the data into another space and then selects one ...

  2. PP: Robust Anomaly Detection for Multivariate Time Series through Stochastic Recurrent Neural Network

    PROBLEM: OmniAnomaly multivariate time series anomaly detection + unsupervised 主体思想: input: multivar ...

  3. 基于图嵌入的高斯混合变分自编码器的深度聚类(Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph Embedding, DGG)

    基于图嵌入的高斯混合变分自编码器的深度聚类 Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph Embedd ...

  4. PP: Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data

    From: Stanford University; Jure Leskovec, citation 6w+; Problem: subsequence clustering. Challenging ...

  5. HDU 3966(树链剖分+点修改+点查询)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3966 题目大意:营地的分布成树型.每个营地都有一些人,每次修改修改一条链上的所有营地的人数,每次查询单 ...

  6. 108. Convert Sorted Array to Binary Search Tree (building tree with resursion)

    Given an array where elements are sorted in ascending order, convert it to a height balanced BST. Fo ...

  7. 论文翻译:2020_DCCRN: Deep Complex Convolution Recurrent Network for Phase-Aware Speech Enhancement

    论文地址:DCCRN:用于相位感知语音增强的深度复杂卷积循环网络 论文代码:https://paperswithcode.com/paper/dccrn-deep-complex-convolutio ...

  8. Awesome Deep Vision

    Awesome Deep Vision  A curated list of deep learning resources for computer vision, inspired by awes ...

  9. 【HDOJ】5096 ACM Rank

    Treap+set仿函数重定义.每当ac一道题目时,相当于对总时间减去一个大数. /* 5096 */ #include <iostream> #include <string> ...

随机推荐

  1. 生成JavaDoc文档

    JavaDoc是一种将注释生成HTML文档的技术,生成的HTML文档类似于Java的API,易读且清晰明了.在简略介绍JavaDoc写法之后,再看一下在Intellij Idea 中如何将代码中的注释 ...

  2. RabbitMQ安装(发生系统错误5。拒绝访问。发生系统错误1067。进程意外终止。)

    RabbitMQ安装步骤(windows) 1.RabbitMQ建立在强大的Erlang OTP平台上,因此我们首先需要安装Erlang. 2.接下来安装RabbitMQ服务rabbitmq-serv ...

  3. C# aggregateexception flatten innerexceptions

    static void AggregateExceptionsDemo() { var task1 = Task.Factory.StartNew(() => { var child1 = Ta ...

  4. oracle快速创建用户、imp/exp导入导出dmp文件

    1.首先我们可以用管理员用户以sysdba的身份登录oracle sqlplus username/password as sysdba 2.然后我就可以来创建用户了. create user use ...

  5. .Net框架的模块代码生成器--其一(dotnet new)

    小白教程声明,首先先介绍一下.Net 框架及模块是什么情况: 1.公司的大佬会把框架的代码打包成Nuget包放在公司的服务器上 2.公司会专门开一个git仓库,存储模块的代码,每个模块都有其独立的文件 ...

  6. 阿里云K8S下玩.NET CORE 3.1

    1. 创建阿里云K8S集群,本文以标准托管集群为例 1.1 创建一个 2台 centos 2core 4G的 k8s 集群 1.2 创建成功的模样 2. 创建 asp.net core webapi项 ...

  7. js内置对象的常用属性和方法(Array | String | Date | Math)

    js内置对象:Array  String  Math  Date <!DOCTYPE html> <html lang="en"> <head> ...

  8. Selenium实战(四)——unittest单元测试3(测试用例的执行顺序)

    一.测试用例的执行顺序 层级:多个测试目录 > 多个测试文件 > 多个测试类 > 多个测试方法(测试用例).在这里以一个测试执行顺序的脚本为例test_order.py import ...

  9. MySQL 8 重置 root 密码

    如果 root 密码丢失,如何重置 root 密码? 重置 root 密码:Unix 和 类 Unix 系统: 1.登录 Unix 系统用户(运行MySQL服务器的用户) 2.停止MySQL服务器   ...

  10. tensorflow数据统计

    本篇内容包括,tf.norm(张量的范数).tf.reduce_min/max(最大最小值).tf.argmax/argmin(最大最小值的位置).tf.equal(张量的比较).tf.unique( ...