PP: Deep r -th Root of Rank Supervised Joint Binary Embedding for Multivariate Time Series Retrieval
from: Dacheng Tao 悉尼大学
PROBLEM:
time series retrieval: given the current multivariate time series segment, how to obtain its relevant time series segments in the historical data.
Two challenging:
1. it requires a compact representation of the raw time series, which can explicitly encode the temporal dynamics as well as the correlations (interactions) between different pairs of time series.
2. 查询相似结果的快速性和准确性。
Compact representation: temporal dynamics + correlations
INTRODUCTION:
问题定义: given the current multivariate time series segment, i.e., a slice of multivariate time series which lasts for a short period of time, we aim to find its most similar time series segments in the historical data (or database).
A supervised multivariate time series retrieval problem. label information is available in historical data.
other methods: discrete Fourier transform; discrete wavelet transform; piecewise aggregate approximation; 但是这些方法仅仅针对univariate time series representation and ignore the correlations between different pairs.
?? 不同序列间的相关性也要compact?? 由于是一个窗口内的multivariate time series, 需要衡量他们之间的correlation.
time serie作为一个独立的个体,如果想研究他们之间的correlations:
1. time series ----> compact representation -----> correlations
2. time series ----> correlation -----> compact representation
To speed up the expensive similarity search。
purpose: multivariate time series retrieval.
input: a raw multivariate time series segment
steps:
- employ lstm units to encode the temporal dynamics
- use cnn to encode the correlations between different pairs of ts
- generated two separate feature vectors from the first two steps.
- two separate feature vectors ----> a joint binary embedding
- calculate the similarity between two multivariate ts segments in Hamming space.
- r-th root ranking loss to train the disciplined embedding functions.
DEEP r-TH ROOT OF RANK SUPERVISED JOINT BINARY EMBEDDING
1. multivariate time series ----> lstm -----> the last hidden state ht
2. multivariate time series ---> correlation matrix -----> cnn ------> fully connected layer, l
3. joint binary embedding: y = [ht, l]; hash function/ embedding ----> Hv
4. 相比于pairwise similarities,我们使用了segment similarities in the form of triplets. {(Xq,Xi,Xj)}
yq: a query segment, yi: similar segment; yj: dissimilar segment;
就我目前看来,只是根据r-th ranking loss进行了训练,输入是{(Xq,Xi,Xj)}。但是最终如何检索的,还是不知道。
EXPERIMENTS
To measure the effectiveness of various binary embedding techniques for multivariate time series retrieval, we consider three evaluation metrics, i.e., Mean Average Precision (MAP), precision at top-k positions (Precision@k), and recall at top-k positions (Recall@k).
结果看起来很不错。
SUPPLEMENTARY KNOWLEDGE:
1. hamming distance: 是两个字符串对应位置的不同字符的个数。
例如:
- 10101与10101之间的汉明距离是2。
- 2396与2396之间的汉明距离是3。
- "toned"与"roses"之间的汉明距离是3。
2. triplet loss
Triplet loss is a loss function for artificial neural networks where a baseline (anchor) input is compared to a positive (truthy) input and a negative (falsy) input. The distance from the baseline (anchor) input to the positive (truthy) input is minimized, and the distance from the baseline (anchor) input to the negative (falsy) input is maximized.[1][2]
PP: Deep r -th Root of Rank Supervised Joint Binary Embedding for Multivariate Time Series Retrieval的更多相关文章
- PP: Deep clustering based on a mixture of autoencoders
Problem: clustering A clustering network transforms the data into another space and then selects one ...
- PP: Robust Anomaly Detection for Multivariate Time Series through Stochastic Recurrent Neural Network
PROBLEM: OmniAnomaly multivariate time series anomaly detection + unsupervised 主体思想: input: multivar ...
- 基于图嵌入的高斯混合变分自编码器的深度聚类(Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph Embedding, DGG)
基于图嵌入的高斯混合变分自编码器的深度聚类 Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph Embedd ...
- PP: Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data
From: Stanford University; Jure Leskovec, citation 6w+; Problem: subsequence clustering. Challenging ...
- HDU 3966(树链剖分+点修改+点查询)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3966 题目大意:营地的分布成树型.每个营地都有一些人,每次修改修改一条链上的所有营地的人数,每次查询单 ...
- 108. Convert Sorted Array to Binary Search Tree (building tree with resursion)
Given an array where elements are sorted in ascending order, convert it to a height balanced BST. Fo ...
- 论文翻译:2020_DCCRN: Deep Complex Convolution Recurrent Network for Phase-Aware Speech Enhancement
论文地址:DCCRN:用于相位感知语音增强的深度复杂卷积循环网络 论文代码:https://paperswithcode.com/paper/dccrn-deep-complex-convolutio ...
- Awesome Deep Vision
Awesome Deep Vision A curated list of deep learning resources for computer vision, inspired by awes ...
- 【HDOJ】5096 ACM Rank
Treap+set仿函数重定义.每当ac一道题目时,相当于对总时间减去一个大数. /* 5096 */ #include <iostream> #include <string> ...
随机推荐
- Eversipn STT-MRAM的MJT细胞
业界一直在寻求取代SRAM.其中之一包括自旋转移力矩MRAM(STT-MRAM).新的存储器带来了一些大胆的主张.例如STT-MRAM具有SRAM的速度和闪存的无波动性,具有无限的耐用性. 图1.ST ...
- <Wonder Woman> 摘抄
<Wonder Woman> My father told me once, he said,“ If you see something wrong happening in the w ...
- oracle数据泵导入导出部分用户
问题描述:需要将140服务器中的tbomnew实例下的部分用户导入到118服务器下的tbompx实例中,本次导入导出的两个数据库均为19C 部分用户名:CORE,MSTDATA,BOMMGMT,CFG ...
- for _ in range(n) python里那些奇奇怪怪的语法糖
for _ in range(n)中 _ 是占位符, 表示不在意变量的值 只是用于循环遍历n次. 例如在一个序列中只想取头和尾,就可以使用_ 其实意思和for each in range(n)是一个意 ...
- c#winform自定义窗体,重绘标题栏,自定义控件学习
c#winform自定义窗体,重绘标题栏 虽然现在都在说winform窗体太丑了,但是我也能尽量让桌面应用程序漂亮那么一点点话不多说,先上图 重绘标题栏先将原生窗体设置成无边框,FormBoderSt ...
- css基础-css选择器和css文本样式相关
css基础-css选择器和css文本样式相关: 使用link链入外部样式,页面加载时会同时加载样式 @import url(“*.css”);使用导入式,页面加载完后,才会加载样式 链接伪类的顺序 : ...
- git 中文乱码配置
$ git config --global --listuser.email=ibaiqi@163.comuser.name=zhangxui18n.commitencoding=utf-8i18n. ...
- vue.config.js添加路径别名
在组件库中添加配置文件后其它文件需要引用它,此时想到利用路径的别名比较方便,相当于缩写了,请看下面的添加过程: (一)在vue.config.js文件中添加的内容如粗体字体所示: const path ...
- js中div显示和隐藏钮为什么页面总是跳一下到最上面
<div class="menu_left"> <ul > <li id="t1" style="background- ...
- gulp常用插件之gulp-if使用
更多gulp常用插件使用请访问:gulp常用插件汇总 gulp-if这是一款条件判断插件. 注意:与gulp-if一起使用时,表现不佳的插件通常会变得更糟.通常,修复不在gulp-if中. 注意:与l ...