959F - Mahmoud and Ehab and yet another xor task xor+dp+离线

题意

给出 n个值和q个询问,询问l,x,表示前l个数字子序列的异或和为x的子序列有多少,其中空序列的异或和为0,一个数字的子序列的异或和是它本身

思路

维护一个集合,记录已经存在在里面的数。

首先我们证明

1.当x在这个集合,y在这个集合的时候\(x\bigoplus y\)也在这个集合里面,因为

\(x=a\bigoplus b\)

\(y=c\bigoplus d\)

所有\(x\bigoplus y==a\bigoplus b \bigoplus c\bigoplus d\)所一定存在在集合中

2.当x在这个集合中y不在这个集合中的时候,\(x\bigoplus y\)不在这个集合中

假设\(x\bigoplus y\)在这个集合中 那么\((x\bigoplus y)\bigoplus x\)也在这个集合中也就是y在这个集合中与题设矛盾

设dp[i][x]表示前i个异或和为x的数量,则有\(dp[i][x]=dp[i-1][x]+dp[i-1][x\bigoplus a[i]]\)

我们用数学归纳法证明 假设对i-1的都成立。

设dp[i-1][x]=j

假设x和a[i]都在set集合中

那么由以上的证明可以知道\(x\bigoplus a[i]\)也在集合中因此,\(dp[i-1][x]=j\)并且\(dp[i-1][x\bigoplus a[i]]=j\)因为dp[i-1][x]的数量已经知道是j了,而a[i]又在集合中,所以每个异或和为x的子序列再异或一个a[i]就变成了\(dp[i-1][x\bigoplus a[i]]\)所以两者数量都为j。

假设a[i]不在集合中

对于x有三种情况

如果x在集合中,由以上证明\(x\bigoplus a[i]\)不在集合中\(dp[i][x]=dp[i-1][x]+dp[i-1][x\bigoplus a[i]]=j+0=0\)

如果x要在这一步被添加到set中,即\(x\bigoplus a[i]\)在集合中,那么有\(dp[i][x]=dp[i-1][x]+dp[i-1][x\bigoplus a[i]]=0+j=j\)

如果不属于上面三种情况,那么\(dp[i][x]=dp[i-1][x]+dp[i-1][x\bigoplus a[i]]=0+0=0\)

得证

ps:for(auto:s)s.pb()在有的版本不会死循环,但以后要注意,避免傻逼错误

#include<bits/stdc++.h>
#define pb push_back
#define F first
#define S second
#define pii pair<int,int>
typedef long long ll;
using namespace std;
const ll maxn=1e5+7;;
const int mod=1e9+7;
int vis[(1<<20)+5];
vector<int>s;
int ans[maxn];
int a[maxn];
vector<pair<int,int> >v[(1<<20)+5];
int main(){
int n,q;
int x,y;
scanf("%d%d",&n,&q);
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
for(int i=1;i<=q;i++){
scanf("%d%d",&x,&y);
v[x].pb({y,i});
}
ll tmp=1;
s.pb(0);
vis[0]=1;
for(int i=1;i<=n;i++){
//cout<<i<<endl;
if(vis[a[i]]){
tmp=tmp*2%mod;
// cout<<111<<endl;
}
else {
/*for(auto p:s){
vis[p^a[i]]=1;
s.pb(p^a[i]);
}*/
int zz=s.size();
for(int j=0;j<zz;j++){
// cout<<s.size()<<" "<<j<<endl;
vis[s[j]^a[i]]=1;
s.pb(s[j]^a[i]);
}
}
// cout<<333<<endl;
/*for(auto&p:v[i]){
ans[p.S]=tmp*vis[p.F];
}*/
for(int j=0;j<v[i].size();j++){
ans[v[i][j].S]=tmp*vis[v[i][j].F];
}
}
for(int i=1;i<=q;i++){
printf("%d\n",ans[i]);
} return 0;
}

959F - Mahmoud and Ehab and yet another xor task xor+dp(递推形)+离线的更多相关文章

  1. codeforces-473D Mahmoud and Ehab and another array construction task (素数筛法+贪心)

    题目传送门 题目大意:先提供一个数组,让你造一个数组,这个数组的要求是 1 各元素之间都互质  2  字典序大于等于原数组  3 每一个元素都大于2 思路: 1.两个数互质的意思就是没有公因子.所以每 ...

  2. Codeforces 959D. Mahmoud and Ehab and another array construction task(构造, 简单数论)

    Codeforces 959D. Mahmoud and Ehab and another array construction task 题意 构造一个任意两个数都互质的序列,使其字典序大等于a序列 ...

  3. D. Mahmoud and Ehab and another array construction task 因子分界模板+贪心+数学

    D. Mahmoud and Ehab and another array construction task 因子分解模板 题意 给出一个原序列a 找出一个字典序大于a的序列b,使得任意 \(i!= ...

  4. Codeforces 959F Mahmoud and Ehab and yet another xor task 线性基 (看题解)

    Mahmoud and Ehab and yet another xor task 存在的元素的方案数都是一样的, 啊, 我好菜啊. 离线之后用线性基取check存不存在,然后计算答案. #inclu ...

  5. CF959D Mahmoud and Ehab and another array construction task 数学

    Mahmoud has an array a consisting of n integers. He asked Ehab to find another array b of the same l ...

  6. Codeforces 959 D Mahmoud and Ehab and another array construction task

    Discription Mahmoud has an array a consisting of n integers. He asked Ehab to find another arrayb of ...

  7. [CF959D]Mahmoud and Ehab and another array construction task题解

    解法 非常暴力的模拟. 一开始吧\(1 -> 2 \times 10^6\)全部扔进一个set里,如果之前取得数都是与原数组相同的,那么lower_bound一下找到set中大于等于它的数,否则 ...

  8. Codeforces 862C - Mahmoud and Ehab and the xor

    862C - Mahmoud and Ehab and the xor 思路:找两对异或后等于(1<<17-1)的数(相当于加起来等于1<<17-1),两个再异或一下就变成0了 ...

  9. Codeforces 959 F. Mahmoud and Ehab and yet another xor task

    \(>Codeforces\space959 F. Mahmoud\ and\ Ehab\ and\ yet\ another\ xor\ task<\) 题目大意 : 给出一个长度为 \ ...

随机推荐

  1. 0013 基于DRF框架开发(01 基类视图 APIView)

    之前学习了模型序列化和普通序列化,我们用最简单的视图和url实现了对序列化的操作. 而实际上,象之前那种由DRF自动生成所有的视图和url的情况,在应用是使用很少.而需要用户根据实际业务需求,自定义视 ...

  2. Qt Gui 第五章绘图类

    双缓冲 void Plotter::refreshPixmap() { pixmap = QPixmap(size()); pixmap.fill(, ); QPainter painter(& ...

  3. 你这是virus吧?

    谁在我的vps上跑了这个?我的备份终于起一定作用了. GO declare @sql varchar(8000) while (select count(*) from sysobjects wher ...

  4. PTA-德州扑克 题解

    于2020/02/24记录. 德州扑克属实是个带难题.本题解简单易懂,命名合理,应该比较好理解. 题目如下: 最近,阿夸迷于德州扑克.所以她找到了很多人和她一起玩.由于人数众多,阿夸必须更改游戏规则: ...

  5. BurpSuite 汉化版(含注册机)安装教程

      1.注册机使用方法 首先需要完成java安装及环境变量配置. 打开burp-loader-keygen.jar(注册机)--点击run--license text (随意写)--然后将生成的lic ...

  6. 网络中的 TCP/IP

    TCP/IP OSI的“实现”:TCP/IP OSI七层模型 TCP/IP概念层模型 功能 TCP/IP协议族 应用层 应用层 文件传输.电子邮件.文件服务.虚拟终端 FTP,HTTP,SMTP,SN ...

  7. LeetCodeTwo Sum IV 树的遍历+Hash大法好

    题意 给定一颗二叉搜索树,返回是否存在两个节点的值之和为给定值K. 思路 同Two Sum.使用Hash表解决.只是要写个树的遍历而已,选取DFS. 源码 class Solution { publi ...

  8. Your name ?

    序言 才发觉自己有许多名字 ··································································· 言归正传 今天才发现,自己在不同地方 ...

  9. Virtual DOM(八)

    Virtual DOM 这个概念相信大部分人都不会陌生,它产生的前提是浏览器中的 DOM 是很“昂贵"的,为了更直观的感受,我们可以简单的把一个简单的 div 元素的属性都打印出来,如图所示 ...

  10. Tomcatd断点调试Debug

    ideaDebug设置