959F - Mahmoud and Ehab and yet another xor task xor+dp+离线

题意

给出 n个值和q个询问,询问l,x,表示前l个数字子序列的异或和为x的子序列有多少,其中空序列的异或和为0,一个数字的子序列的异或和是它本身

思路

维护一个集合,记录已经存在在里面的数。

首先我们证明

1.当x在这个集合,y在这个集合的时候\(x\bigoplus y\)也在这个集合里面,因为

\(x=a\bigoplus b\)

\(y=c\bigoplus d\)

所有\(x\bigoplus y==a\bigoplus b \bigoplus c\bigoplus d\)所一定存在在集合中

2.当x在这个集合中y不在这个集合中的时候,\(x\bigoplus y\)不在这个集合中

假设\(x\bigoplus y\)在这个集合中 那么\((x\bigoplus y)\bigoplus x\)也在这个集合中也就是y在这个集合中与题设矛盾

设dp[i][x]表示前i个异或和为x的数量,则有\(dp[i][x]=dp[i-1][x]+dp[i-1][x\bigoplus a[i]]\)

我们用数学归纳法证明 假设对i-1的都成立。

设dp[i-1][x]=j

假设x和a[i]都在set集合中

那么由以上的证明可以知道\(x\bigoplus a[i]\)也在集合中因此,\(dp[i-1][x]=j\)并且\(dp[i-1][x\bigoplus a[i]]=j\)因为dp[i-1][x]的数量已经知道是j了,而a[i]又在集合中,所以每个异或和为x的子序列再异或一个a[i]就变成了\(dp[i-1][x\bigoplus a[i]]\)所以两者数量都为j。

假设a[i]不在集合中

对于x有三种情况

如果x在集合中,由以上证明\(x\bigoplus a[i]\)不在集合中\(dp[i][x]=dp[i-1][x]+dp[i-1][x\bigoplus a[i]]=j+0=0\)

如果x要在这一步被添加到set中,即\(x\bigoplus a[i]\)在集合中,那么有\(dp[i][x]=dp[i-1][x]+dp[i-1][x\bigoplus a[i]]=0+j=j\)

如果不属于上面三种情况,那么\(dp[i][x]=dp[i-1][x]+dp[i-1][x\bigoplus a[i]]=0+0=0\)

得证

ps:for(auto:s)s.pb()在有的版本不会死循环,但以后要注意,避免傻逼错误

#include<bits/stdc++.h>
#define pb push_back
#define F first
#define S second
#define pii pair<int,int>
typedef long long ll;
using namespace std;
const ll maxn=1e5+7;;
const int mod=1e9+7;
int vis[(1<<20)+5];
vector<int>s;
int ans[maxn];
int a[maxn];
vector<pair<int,int> >v[(1<<20)+5];
int main(){
int n,q;
int x,y;
scanf("%d%d",&n,&q);
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
for(int i=1;i<=q;i++){
scanf("%d%d",&x,&y);
v[x].pb({y,i});
}
ll tmp=1;
s.pb(0);
vis[0]=1;
for(int i=1;i<=n;i++){
//cout<<i<<endl;
if(vis[a[i]]){
tmp=tmp*2%mod;
// cout<<111<<endl;
}
else {
/*for(auto p:s){
vis[p^a[i]]=1;
s.pb(p^a[i]);
}*/
int zz=s.size();
for(int j=0;j<zz;j++){
// cout<<s.size()<<" "<<j<<endl;
vis[s[j]^a[i]]=1;
s.pb(s[j]^a[i]);
}
}
// cout<<333<<endl;
/*for(auto&p:v[i]){
ans[p.S]=tmp*vis[p.F];
}*/
for(int j=0;j<v[i].size();j++){
ans[v[i][j].S]=tmp*vis[v[i][j].F];
}
}
for(int i=1;i<=q;i++){
printf("%d\n",ans[i]);
} return 0;
}

959F - Mahmoud and Ehab and yet another xor task xor+dp(递推形)+离线的更多相关文章

  1. codeforces-473D Mahmoud and Ehab and another array construction task (素数筛法+贪心)

    题目传送门 题目大意:先提供一个数组,让你造一个数组,这个数组的要求是 1 各元素之间都互质  2  字典序大于等于原数组  3 每一个元素都大于2 思路: 1.两个数互质的意思就是没有公因子.所以每 ...

  2. Codeforces 959D. Mahmoud and Ehab and another array construction task(构造, 简单数论)

    Codeforces 959D. Mahmoud and Ehab and another array construction task 题意 构造一个任意两个数都互质的序列,使其字典序大等于a序列 ...

  3. D. Mahmoud and Ehab and another array construction task 因子分界模板+贪心+数学

    D. Mahmoud and Ehab and another array construction task 因子分解模板 题意 给出一个原序列a 找出一个字典序大于a的序列b,使得任意 \(i!= ...

  4. Codeforces 959F Mahmoud and Ehab and yet another xor task 线性基 (看题解)

    Mahmoud and Ehab and yet another xor task 存在的元素的方案数都是一样的, 啊, 我好菜啊. 离线之后用线性基取check存不存在,然后计算答案. #inclu ...

  5. CF959D Mahmoud and Ehab and another array construction task 数学

    Mahmoud has an array a consisting of n integers. He asked Ehab to find another array b of the same l ...

  6. Codeforces 959 D Mahmoud and Ehab and another array construction task

    Discription Mahmoud has an array a consisting of n integers. He asked Ehab to find another arrayb of ...

  7. [CF959D]Mahmoud and Ehab and another array construction task题解

    解法 非常暴力的模拟. 一开始吧\(1 -> 2 \times 10^6\)全部扔进一个set里,如果之前取得数都是与原数组相同的,那么lower_bound一下找到set中大于等于它的数,否则 ...

  8. Codeforces 862C - Mahmoud and Ehab and the xor

    862C - Mahmoud and Ehab and the xor 思路:找两对异或后等于(1<<17-1)的数(相当于加起来等于1<<17-1),两个再异或一下就变成0了 ...

  9. Codeforces 959 F. Mahmoud and Ehab and yet another xor task

    \(>Codeforces\space959 F. Mahmoud\ and\ Ehab\ and\ yet\ another\ xor\ task<\) 题目大意 : 给出一个长度为 \ ...

随机推荐

  1. Codeforces Round #578 (Div. 2) 二维差分 可做模板

    题意: 在n*n的矩阵中,你可以选择一个k*k的子矩阵,然后将这个子矩阵中的所有B全部变为W,问你怎么选择这个子矩阵使得最终的矩阵中某一行全是W或者某一列全是W的个数最多 题解:考虑每一行和每一列,对 ...

  2. 【PHP】使用PHP抓取Bing每日图像并为己所用

    Bing搜索的首页每天都会推送一张很漂亮的图片,把它保存下来,当做电脑桌面或是自己的网站背景图还不是美滋滋…… 今天的bing图片是这样的 既然要抓取这张图片,首先就得弄清这张图是从何而来的.经过对必 ...

  3. Hibernate + mysql 配置

    1.生成po的配置 2.连接 MySQL 数据库的配合

  4. 【并发那些事】线程有序化神器CompletionService

    前言 话说有一天,产品经理突然找到正在摸鱼的你. 产品:『我们要加一个聚合搜索功能,当用户在我们网站查询一件商品时,我们分别从 A.B.C 三个网站上查询这个信息,然后再把得到的结果返回给用户』 你: ...

  5. linux2.4.0源码下载地址(配合毛德操情景分析)

    https://www.kernel.org/pub/linux/kernel/v2.4/

  6. ECMAScript基本语法——⑤运算符 算数运算符

    +-*/%

  7. 【Unity|C#】基础篇(19)——集合库(Collections)

    [学习资料] <C#图解教程>(第6章):https://www.cnblogs.com/moonache/p/7687551.html 电子书下载:https://pan.baidu.c ...

  8. IDEA全局搜索

    搜索文件名:连续按两下Shift键 搜索字符串:Ctrl + Shift +F

  9. C#调用WSDL接口

    http://www.cnblogs.com/wlming/p/8032782.html

  10. wso2 使用配置

    1.下载wso2 https://docs.wso2.com 2.配置 https://172.10.0.59:9443/publisher https://172.10.0.59:9443/carb ...