pytorch -- CNN 文本分类 -- 《 Convolutional Neural Networks for Sentence Classification》
论文 《 Convolutional Neural Networks for Sentence Classification》通过CNN实现了文本分类。
论文地址: 666666
模型图:
模型解释可以看论文,给出code and comment:https://github.com/graykode/nlp-tutorial
# -*- coding: utf-8 -*-
# @time : 2019/11/9 13:55 import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
import torch.nn.functional as F dtype = torch.FloatTensor # Text-CNN Parameter
embedding_size = 2 # n-gram
sequence_length = 3
num_classes = 2 # 0 or 1
filter_sizes = [2, 2, 2] # n-gram window
num_filters = 3 # 3 words sentences (=sequence_length is 3)
sentences = ["i love you", "he loves me", "she likes baseball", "i hate you", "sorry for that", "this is awful"]
labels = [1, 1, 1, 0, 0, 0] # 1 is good, 0 is not good. word_list = " ".join(sentences).split()
word_list = list(set(word_list))
word_dict = {w: i for i, w in enumerate(word_list)}
vocab_size = len(word_dict) inputs = []
for sen in sentences:
inputs.append(np.asarray([word_dict[n] for n in sen.split()])) targets = []
for out in labels:
targets.append(out) # To using Torch Softmax Loss function input_batch = Variable(torch.LongTensor(inputs))
target_batch = Variable(torch.LongTensor(targets)) class TextCNN(nn.Module):
def __init__(self):
super(TextCNN, self).__init__() self.num_filters_total = num_filters * len(filter_sizes)
self.W = nn.Parameter(torch.empty(vocab_size, embedding_size).uniform_(-1, 1)).type(dtype)
self.Weight = nn.Parameter(torch.empty(self.num_filters_total, num_classes).uniform_(-1, 1)).type(dtype)
self.Bias = nn.Parameter(0.1 * torch.ones([num_classes])).type(dtype) def forward(self, X):
embedded_chars = self.W[X] # [batch_size, sequence_length, sequence_length]
embedded_chars = embedded_chars.unsqueeze(1) # add channel(=1) [batch, channel(=1), sequence_length, embedding_size] pooled_outputs = []
for filter_size in filter_sizes:
# conv : [input_channel(=1), output_channel(=3), (filter_height, filter_width), bias_option]
conv = nn.Conv2d(1, num_filters, (filter_size, embedding_size), bias=True)(embedded_chars)
h = F.relu(conv)
# mp : ((filter_height, filter_width))
mp = nn.MaxPool2d((sequence_length - filter_size + 1, 1))
# pooled : [batch_size(=6), output_height(=1), output_width(=1), output_channel(=3)]
pooled = mp(h).permute(0, 3, 2, 1)
pooled_outputs.append(pooled) h_pool = torch.cat(pooled_outputs, len(filter_sizes)) # [batch_size(=6), output_height(=1), output_width(=1), output_channel(=3) * 3]
h_pool_flat = torch.reshape(h_pool, [-1, self.num_filters_total]) # [batch_size(=6), output_height * output_width * (output_channel * 3)] model = torch.mm(h_pool_flat, self.Weight) + self.Bias # [batch_size, num_classes]
return model model = TextCNN() criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001) # Training
for epoch in range(5000):
optimizer.zero_grad()
output = model(input_batch) # output : [batch_size, num_classes], target_batch : [batch_size] (LongTensor, not one-hot)
loss = criterion(output, target_batch)
if (epoch + 1) % 1000 == 0:
print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss)) loss.backward()
optimizer.step() # Test
test_text = 'sorry hate you'
tests = [np.asarray([word_dict[n] for n in test_text.split()])]
test_batch = Variable(torch.LongTensor(tests)) # Predict
predict = model(test_batch).data.max(1, keepdim=True)[1]
if predict[0][0] == 0:
print(test_text,"is Bad Mean...")
else:
print(test_text,"is Good Mean!!")
pytorch -- CNN 文本分类 -- 《 Convolutional Neural Networks for Sentence Classification》的更多相关文章
- 卷积神经网络用语句子分类---Convolutional Neural Networks for Sentence Classification 学习笔记
读了一篇文章,用到卷积神经网络的方法来进行文本分类,故写下一点自己的学习笔记: 本文在事先进行单词向量的学习的基础上,利用卷积神经网络(CNN)进行句子分类,然后通过微调学习任务特定的向量,提高性能. ...
- 《Convolutional Neural Networks for Sentence Classification》 文本分类
文本分类任务中可以利用CNN来提取句子中类似 n-gram 的关键信息. TextCNN的详细过程原理图见下: keras 代码: def convs_block(data, convs=[3, 3, ...
- [NLP-CNN] Convolutional Neural Networks for Sentence Classification -2014-EMNLP
1. Overview 本文将CNN用于句子分类任务 (1) 使用静态vector + CNN即可取得很好的效果:=> 这表明预训练的vector是universal的特征提取器,可以被用于多种 ...
- CNN 文本分类
谈到文本分类,就不得不谈谈CNN(Convolutional Neural Networks).这个经典的结构在文本分类中取得了不俗的结果,而运用在这里的卷积可以分为1d .2d甚至是3d的. 下面 ...
- [转] Understanding Convolutional Neural Networks for NLP
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/ 讲CNN以及其在NLP的应用,非常 ...
- Understanding Convolutional Neural Networks for NLP
When we hear about Convolutional Neural Network (CNNs), we typically think of Computer Vision. CNNs ...
- How to Use Convolutional Neural Networks for Time Series Classification
How to Use Convolutional Neural Networks for Time Series Classification 2019-10-08 12:09:35 This blo ...
- Deep learning_CNN_Review:A Survey of the Recent Architectures of Deep Convolutional Neural Networks——2019
CNN综述文章 的翻译 [2019 CVPR] A Survey of the Recent Architectures of Deep Convolutional Neural Networks 翻 ...
- [转]XNOR-Net ImageNet Classification Using Binary Convolutional Neural Networks
感谢: XNOR-Net ImageNet Classification Using Binary Convolutional Neural Networks XNOR-Net ImageNet Cl ...
随机推荐
- SEATA 分布式事务入门DEMO
Simple Extensible Autonomous Transacation Architecture,seata是简单的.可扩展.自主性高的分布式架构 SEATA Server Configu ...
- cogs 1963. [HAOI 2015] 树上操作 树链剖分+线段树
1963. [HAOI 2015] 树上操作 ★★★☆ 输入文件:haoi2015_t2.in 输出文件:haoi2015_t2.out 简单对比时间限制:1 s 内存限制:256 M ...
- Python第一个请求接口
1.普通get请求 import requests import json login_res=requests.post(url='http://joy.web.com:8090/login',da ...
- Nginx代理服务——常用的配置语法
可以到官方查看所有代理的配置语法http://nginx.org/en/docs/http/ngx_http_proxy_module.html 缓存区 Syntax:proxy_buffering ...
- 利用 sklearn 生成交叉特征:
------------------------------------- ------------------------------------- ------------------------ ...
- spring cloud的配置
注解篇 @EnableEurekaServer 注解启动一个服务注册中心提供给其他应用进行对话 @EnableDiscoveryClient 激活Eureka中的DiscoveryClient实现 配 ...
- 使用Oracle Stream Analytics 21步搭建大数据实时流分析平台
概要: Oracle Stream Analytics(OSA)是企业级大数据流实时分析计算平台.它可以通过使用复杂的关联模式,扩充和机器学习算法来自动处理和分析大规模实时信息.流式传输的大数据可以源 ...
- Java电商支付系统手把手实现(二) - 数据库表设计的最佳实践
1 数据库设计 1.1 表关系梳理 仔细思考业务关系,得到如下表关系图 1.2 用户表结构 1.3 分类表结构 id=0为根节点,分类其实是树状结构 1.4 商品表结构 注意价格字段的类型为 deci ...
- [bzoj2004] [洛谷P3204] [Hnoi2010] Bus 公交线路
Description 小Z所在的城市有N个公交车站,排列在一条长(N-1)km的直线上,从左到右依次编号为1到N,相邻公交车站间的距 离均为1km. 作为公交车线路的规划者,小Z调查了市民的需求,决 ...
- 红黑树(依照4阶B树C++实现)
我在编写红黑树的时候类比这2-3-4树的原理来书写 语言标准:C++11 在Ubuntu 18.04上通过编译和测试 从刚开始只听说过这个概念,到学习,再到编出代码,然后在进行测试,最后完成代码一共花 ...