论文  《 Convolutional Neural Networks for Sentence Classification》通过CNN实现了文本分类。

论文地址: 666666

模型图:

  

模型解释可以看论文,给出code and comment:https://github.com/graykode/nlp-tutorial

 # -*- coding: utf-8 -*-
# @time : 2019/11/9 13:55 import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
import torch.nn.functional as F dtype = torch.FloatTensor # Text-CNN Parameter
embedding_size = 2 # n-gram
sequence_length = 3
num_classes = 2 # 0 or 1
filter_sizes = [2, 2, 2] # n-gram window
num_filters = 3 # 3 words sentences (=sequence_length is 3)
sentences = ["i love you", "he loves me", "she likes baseball", "i hate you", "sorry for that", "this is awful"]
labels = [1, 1, 1, 0, 0, 0] # 1 is good, 0 is not good. word_list = " ".join(sentences).split()
word_list = list(set(word_list))
word_dict = {w: i for i, w in enumerate(word_list)}
vocab_size = len(word_dict) inputs = []
for sen in sentences:
inputs.append(np.asarray([word_dict[n] for n in sen.split()])) targets = []
for out in labels:
targets.append(out) # To using Torch Softmax Loss function input_batch = Variable(torch.LongTensor(inputs))
target_batch = Variable(torch.LongTensor(targets)) class TextCNN(nn.Module):
def __init__(self):
super(TextCNN, self).__init__() self.num_filters_total = num_filters * len(filter_sizes)
self.W = nn.Parameter(torch.empty(vocab_size, embedding_size).uniform_(-1, 1)).type(dtype)
self.Weight = nn.Parameter(torch.empty(self.num_filters_total, num_classes).uniform_(-1, 1)).type(dtype)
self.Bias = nn.Parameter(0.1 * torch.ones([num_classes])).type(dtype) def forward(self, X):
embedded_chars = self.W[X] # [batch_size, sequence_length, sequence_length]
embedded_chars = embedded_chars.unsqueeze(1) # add channel(=1) [batch, channel(=1), sequence_length, embedding_size] pooled_outputs = []
for filter_size in filter_sizes:
# conv : [input_channel(=1), output_channel(=3), (filter_height, filter_width), bias_option]
conv = nn.Conv2d(1, num_filters, (filter_size, embedding_size), bias=True)(embedded_chars)
h = F.relu(conv)
# mp : ((filter_height, filter_width))
mp = nn.MaxPool2d((sequence_length - filter_size + 1, 1))
# pooled : [batch_size(=6), output_height(=1), output_width(=1), output_channel(=3)]
pooled = mp(h).permute(0, 3, 2, 1)
pooled_outputs.append(pooled) h_pool = torch.cat(pooled_outputs, len(filter_sizes)) # [batch_size(=6), output_height(=1), output_width(=1), output_channel(=3) * 3]
h_pool_flat = torch.reshape(h_pool, [-1, self.num_filters_total]) # [batch_size(=6), output_height * output_width * (output_channel * 3)] model = torch.mm(h_pool_flat, self.Weight) + self.Bias # [batch_size, num_classes]
return model model = TextCNN() criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001) # Training
for epoch in range(5000):
optimizer.zero_grad()
output = model(input_batch) # output : [batch_size, num_classes], target_batch : [batch_size] (LongTensor, not one-hot)
loss = criterion(output, target_batch)
if (epoch + 1) % 1000 == 0:
print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss)) loss.backward()
optimizer.step() # Test
test_text = 'sorry hate you'
tests = [np.asarray([word_dict[n] for n in test_text.split()])]
test_batch = Variable(torch.LongTensor(tests)) # Predict
predict = model(test_batch).data.max(1, keepdim=True)[1]
if predict[0][0] == 0:
print(test_text,"is Bad Mean...")
else:
print(test_text,"is Good Mean!!")

pytorch -- CNN 文本分类 -- 《 Convolutional Neural Networks for Sentence Classification》的更多相关文章

  1. 卷积神经网络用语句子分类---Convolutional Neural Networks for Sentence Classification 学习笔记

    读了一篇文章,用到卷积神经网络的方法来进行文本分类,故写下一点自己的学习笔记: 本文在事先进行单词向量的学习的基础上,利用卷积神经网络(CNN)进行句子分类,然后通过微调学习任务特定的向量,提高性能. ...

  2. 《Convolutional Neural Networks for Sentence Classification》 文本分类

    文本分类任务中可以利用CNN来提取句子中类似 n-gram 的关键信息. TextCNN的详细过程原理图见下: keras 代码: def convs_block(data, convs=[3, 3, ...

  3. [NLP-CNN] Convolutional Neural Networks for Sentence Classification -2014-EMNLP

    1. Overview 本文将CNN用于句子分类任务 (1) 使用静态vector + CNN即可取得很好的效果:=> 这表明预训练的vector是universal的特征提取器,可以被用于多种 ...

  4. CNN 文本分类

    谈到文本分类,就不得不谈谈CNN(Convolutional Neural Networks).这个经典的结构在文本分类中取得了不俗的结果,而运用在这里的卷积可以分为1d .2d甚至是3d的.  下面 ...

  5. [转] Understanding Convolutional Neural Networks for NLP

    http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/ 讲CNN以及其在NLP的应用,非常 ...

  6. Understanding Convolutional Neural Networks for NLP

    When we hear about Convolutional Neural Network (CNNs), we typically think of Computer Vision. CNNs ...

  7. How to Use Convolutional Neural Networks for Time Series Classification

    How to Use Convolutional Neural Networks for Time Series Classification 2019-10-08 12:09:35 This blo ...

  8. Deep learning_CNN_Review:A Survey of the Recent Architectures of Deep Convolutional Neural Networks——2019

    CNN综述文章 的翻译 [2019 CVPR] A Survey of the Recent Architectures of Deep Convolutional Neural Networks 翻 ...

  9. [转]XNOR-Net ImageNet Classification Using Binary Convolutional Neural Networks

    感谢: XNOR-Net ImageNet Classification Using Binary Convolutional Neural Networks XNOR-Net ImageNet Cl ...

随机推荐

  1. Scala与Mongodb实践2-----图片、日期的存储读取

    目的:在IDEA中实现图片.日期等相关的类型在mongodb存储读取 主要是Scala和mongodb里面的类型的转换.Scala里面的数据编码类型和mongodb里面的存储的数据类型各个不同.存在类 ...

  2. ASP.Net MVC 引用动态 js 脚本

    希望可以动态生成 js  发送给客户端使用. layout页引用: <script type="text/javascript" src="@Url.Action( ...

  3. 贪心 park

    来总结一道非常经典的好题 这一道题是通过贪心实现的 首先看到这一题的时间复杂度 n<=100000 需要一个比较玄学的做法 我们先假设把题干改成这个样子 一圈n个车位 停在每个车位都有一定的代价 ...

  4. CF 558 C

    Amr loves Chemistry, and specially doing experiments. He is preparing for a new interesting experime ...

  5. C# html生成图片保存下载

    最近有个需求,需要把内容生成图片,我找到一些资料可以将html页面生成图片并保存下载 下面是简单的实现 1.html页面 @{ Layout = null; } <!DOCTYPE html&g ...

  6. java.lang.UnsupportedOperationException: Manual close is not allowed over a Spring managed SqlSession

    java.lang.UnsupportedOperationException: Manual close is not allowed over a Spring managed SqlSessio ...

  7. python3小脚本-监控服务器性能并插入mysql数据库

    操作系统: centos版本 7.4 防火墙 关闭 selinux 关闭 python版本 3.6 mysql版本 5.7 #操作系统性能脚本 [root@localhost sql]# cat cp ...

  8. 百度搜索关键词联想API JSONP使用实例

    许多搜索引擎都提供了关键词联想api,且大多数都是jsonp. Jsonp(JSON with Padding) 是 json 的一种"使用模式",可以让网页从别的域名(网站)那获 ...

  9. 移除sitemap中的entity

    下面截图是sitemap所在的位置 如果遇到什么原因,当前使用的entity被弃用需要删除,必须要把当前site map 引用的entity也一并删除. 不然会导致site map不能正常加载

  10. 用CSS实现横向滚动条

    在进行app制作时,需要使用横向滚动条是内容展示更完善 首先,这是html代码: 这是CSS代码: 要点: 设置显示内容的宽 white-space是防止内容自动折行 overflow-y设置为hid ...