1. heapq堆排序算法

堆(heap)是一个树形数据结构,其中子节点与父节点有一种有序关系。二叉堆(binary heap)可以使用一个有组织的列表或数组表示,其中元素N的子元素位于2*N+1和2*N+2(索引从0开始)。这种布局允许原地重新组织堆,从而不必再添加或删除元素时重新分配大量内存。

最大堆(max-heap)确保父节点大于或等于其两个子节点。最小堆(min-heap)要求父节点小于或等于其子节点。Python的heapq模块实现了一个最小堆。

1.1 创建堆

创建堆有两种基本方式:heappush()和heapify()。

import heapq
import math
from io import StringIO data = [19, 9, 4, 10, 11] def show_tree(tree, total_width=36, fill=' '):
"""Pretty-print a tree."""
output = StringIO()
last_row = -1
for i, n in enumerate(tree):
if i:
row = int(math.floor(math.log(i + 1, 2)))
else:
row = 0
if row != last_row:
output.write('\n')
columns = 2 ** row
col_width = int(math.floor(total_width / columns))
output.write(str(n).center(col_width, fill))
last_row = row
print(output.getvalue())
print('-' * total_width)
print() heap = []
print('random :', data)
print() for n in data:
print('add {:>3}:'.format(n))
heapq.heappush(heap, n)
show_tree(heap)

使用heappush(),从数据源增加新元素时会保持元素的堆排序顺序。

如果数据已经在内存中,那么使用heapify()原地重新组织列表中的元素会更高效。

import heapq
import math
from io import StringIO data = [19, 9, 4, 10, 11] def show_tree(tree, total_width=36, fill=' '):
"""Pretty-print a tree."""
output = StringIO()
last_row = -1
for i, n in enumerate(tree):
if i:
row = int(math.floor(math.log(i + 1, 2)))
else:
row = 0
if row != last_row:
output.write('\n')
columns = 2 ** row
col_width = int(math.floor(total_width / columns))
output.write(str(n).center(col_width, fill))
last_row = row
print(output.getvalue())
print('-' * total_width)
print() print('random :', data)
heapq.heapify(data)
print('heapified :')
show_tree(data)

如果按堆顺序一次一个元素地构建列表,那么结果与构建一个无序列表再调用heapify()是一样的。

1.2 访问堆内容

一旦堆已经被正确组织,则可以使用heappop()删除有最小值的元素。

import heapq
import math
from io import StringIO data = [19, 9, 4, 10, 11] def show_tree(tree, total_width=36, fill=' '):
"""Pretty-print a tree."""
output = StringIO()
last_row = -1
for i, n in enumerate(tree):
if i:
row = int(math.floor(math.log(i + 1, 2)))
else:
row = 0
if row != last_row:
output.write('\n')
columns = 2 ** row
col_width = int(math.floor(total_width / columns))
output.write(str(n).center(col_width, fill))
last_row = row
print(output.getvalue())
print('-' * total_width)
print() print('random :', data)
heapq.heapify(data)
print('heapified :')
show_tree(data)
print() for i in range(2):
smallest = heapq.heappop(data)
print('pop {:>3}:'.format(smallest))
show_tree(data)

这个例子是由标准库文档改写的,其中使用heapify()和heappop()对一个数字队列进行排序。

如果希望在一个操作中删除现有元素并替换为新值,则可以使用heapreplace()。

import heapq
import math
from io import StringIO data = [19, 9, 4, 10, 11] def show_tree(tree, total_width=36, fill=' '):
"""Pretty-print a tree."""
output = StringIO()
last_row = -1
for i, n in enumerate(tree):
if i:
row = int(math.floor(math.log(i + 1, 2)))
else:
row = 0
if row != last_row:
output.write('\n')
columns = 2 ** row
col_width = int(math.floor(total_width / columns))
output.write(str(n).center(col_width, fill))
last_row = row
print(output.getvalue())
print('-' * total_width)
print() heapq.heapify(data)
print('start:')
show_tree(data) for n in [0, 13]:
smallest = heapq.heapreplace(data, n)
print('replace {:>2} with {:>2}:'.format(smallest, n))
show_tree(data)

通过原地替换元素,就这样可以维持一个固定大小的堆,如按优先级排序的作业队列。

1.3 堆的数据极值

heapq还包括两个检查可迭代对象(iterable)的函数,可以查找其中包含的最大或最小值的范围。

import heapq
import math
from io import StringIO data = [19, 9, 4, 10, 11] def show_tree(tree, total_width=36, fill=' '):
"""Pretty-print a tree."""
output = StringIO()
last_row = -1
for i, n in enumerate(tree):
if i:
row = int(math.floor(math.log(i + 1, 2)))
else:
row = 0
if row != last_row:
output.write('\n')
columns = 2 ** row
col_width = int(math.floor(total_width / columns))
output.write(str(n).center(col_width, fill))
last_row = row
print(output.getvalue())
print('-' * total_width)
print() print('all :', data)
print('3 largest :', heapq.nlargest(3, data))
print('from sort :', list(reversed(sorted(data)[-3:])))
print('3 smallest:', heapq.nsmallest(3, data))
print('from sort :', sorted(data)[:3])

只有当n值(n>1)相对小时使用nlargest()和nsmallest()才算高效,不过有些情况下这两个函数会很方便。

1.4 高效合并有序序列

对于小数据集,将多个有序序列合并到一个新序列很容易。

list(sorted(itertools.chain(*data)))

对于较大的数据集,这个技术可能会占用大量内存。merge()不是对整个合并后的序列排序,而是使用一个堆一次一个元素地生成一个新序列,利用固定大小的内存确定下一个元素。

import heapq
import random random.seed(2016) data = []
for i in range(4):
new_data = list(random.sample(range(1, 101), 5))
new_data.sort()
data.append(new_data) for i, d in enumerate(data):
print('{}: {}'.format(i, d)) print('\nMerged:')
for i in heapq.merge(*data):
print(i, end=' ')
print()

由于merge()的实现使用了一个堆,所以它会根据所合并的序列个数消耗内存,而不是根据这些序列中的元素个数。

Python3标准库:heapq堆排序算法的更多相关文章

  1. Python3 标准库

    Python3标准库 更详尽:http://blog.csdn.net/jurbo/article/details/52334345 文本 string:通用字符串操作 re:正则表达式操作 diff ...

  2. 8.Python3标准库--数据持久存储与交换

    ''' 持久存储数据以便长期使用包括两个方面:在对象的内存中表示和存储格式之间来回转换数据,以及处理转换后数据的存储区. 标准库包含很多模块可以处理不同情况下的这两个方面 有两个模块可以将对象转换为一 ...

  3. python023 Python3 标准库概览

    Python3 标准库概览 操作系统接口 os模块提供了不少与操作系统相关联的函数. >>> import os >>> os.getcwd() # 返回当前的工作 ...

  4. python3标准库总结

    Python3标准库 操作系统接口 os模块提供了不少与操作系统相关联的函数. ? 1 2 3 4 5 6 >>> import os >>> os.getcwd( ...

  5. 7.Python3标准库--文件系统

    ''' Python的标准库中包含大量工具,可以处理文件系统中的文件,构造和解析文件名,还可以检查文件内容. 处理文件的第一步是要确定处理的文件的名字.Python将文件名表示为简单的字符串,另外还提 ...

  6. 1.Python3标准库--前戏

    Python有一个很大的优势便是在于其拥有丰富的第三方库,可以解决很多很多问题.其实Python的标准库也是非常丰富的,今后我将介绍一下Python的标准库. 这个教程使用的书籍就叫做<Pyth ...

  7. 比较两个文件的异同Python3 标准库difflib 实现

    比较两个文件的异同Python3 标准库difflib 实现 对于要比较两个文件特别是配置文件的差异,这种需求很常见,如果用眼睛看,真是眼睛疼. 可以使用linux命令行工具diff a_file b ...

  8. 3.Python3标准库--数据结构

    (一)enum:枚举类型 import enum ''' enum模块定义了一个提供迭代和比较功能的枚举类型.可以用这个为值创建明确定义的符号,而不是使用字面量整数或字符串 ''' 1.创建枚举 im ...

  9. 读书分享全网学习资源大合集,推荐Python3标准库等五本书「02」

    0.前言 在此之前,我已经为准备学习python的小白同学们准备了轻量级但超无敌的python开发利器之visio studio code使用入门系列.详见 1.PYTHON开发利器之VS Code使 ...

随机推荐

  1. python 异常之进阶操作

    1.文件分析 下面来做一些文件分析操作,分析整本书的信息. 知识点: string.split():将字符串分解为列表. open(filename,‘rb’)或者open(filename,enco ...

  2. constrainlayout布局

    <android.support.constraint.ConstraintLayout xmlns:android="http://schemas.android.com/apk/r ...

  3. css 浏览兼容问题及解决办法 (1)

    主流浏览器css兼容问题的总结 最近又搞了一波网站的兼容,由于要求ie浏览器还是要兼容到ie8,所以调起来还是各种蛋疼. 现在就post一些做兼容的总结,可能不够全面,但是可以告诉大家如何避过一些坑. ...

  4. DRF框架的安装与使用

    目录 DRF框架的安装与配置 基于restful接口规范的接口设计 DRF框架的安装与配置 """ 1)安装 >: pip install djangorestfr ...

  5. 2020.2.22 bzoj5336 party

    #include<iostream> #include<cstdio> #include<cstring> #include<cctype> #incl ...

  6. 【学习底层原理系列】重读spring源码1-建立基本的认知模型

    开篇闲扯 在工作中,相信很多人都有这种体会,与其修改别人代码,宁愿自己重写. 为什么? 先说为什么愿意自己写: 从0-1的过程,是建立在自己已有认知基础上,去用自己熟悉的方式构建一件作品.也就是说, ...

  7. django的自定义权限

    最近在写发布系统,涉及到权限的控制 参考 黄小墨同学的博客实现了 如下 1:定义一张权限控制的表 [root@localhost app01]# tailf -25 models.py class P ...

  8. apache 访问状态 分析

    状态查看: 1.查看apache 各状态连接数 [root]#netstat -n | awk '/^tcp/ {++S[$NF]} END {for(a in S) print a, S[a]}' ...

  9. Element-UI ( Dropdow )下拉菜单组件command传输对象

    通过 :command绑定对象数据,handleCommand方法处理数据 template <div v-for="(item, index) in FlyWarningList&q ...

  10. webpack性能优化

    Webpack优化打包速度以及性能优化 1.跟上技术的迭代(Node.Npm.Yarn) 2.在尽可能少的模块上应用loader 3.Plugin尽可能精简并确保可靠 4.resolve参数合理配置 ...