欧拉-拉格朗日方程 The Euler-Lagrange Equation
在 paper: Bounded Biharmonic Weights for Real-Time Deformation 中第一次接触到 Euler-Lagrange 方程,简单记录一下。
泛函的定义
定义一: 泛函(functional)通常是指定义域为函数集,而值域为实数或者复数的映射。换而言之,泛函是从由函数组成的一个向量空间到标量域的映射。
定义二: 设 \(\boldsymbol{C}\) 是函数(形式)的集合,\(\boldsymbol{B}\) 是实数集合;如果对 \(\boldsymbol{C}\) 中的任一个元素 \(y(x)\),在 \(\boldsymbol{B}\) 中都有一个元素 \(\boldsymbol{J}\) 与之对应,则称 \(\boldsymbol{J}\) 为 \(y(x)\) 的泛函,记为 \(\boldsymbol{J}[y(x)]\)。
泛函是函数的函数,以函数为自变量,而非普通变量
最短路径: \(\boldsymbol{L} = \boldsymbol{L}[y(x)]\)
\(J[y(x)] = \int_a^b \sqrt{1 + y'^{2}} dx\)
最简泛函: 满足以下关系的泛函称为最简泛函
\(J[y(x)] = \int_a^b F(x, y, y') dx\)
其中,\(F(x, y, y')\) 被称为核函数。
注:算子是一个函数到另一个函数的映射,它是从向量空间到向量空间的映射;泛函是从向量空间到数域的映射;函数是从数域到数域的映射。
最短路径问题
参考:
「泛函」究竟是什么意思? - 清雅白鹿记的回答 - 知乎
泛函和变分法
欧拉-拉格朗日方程 The Euler-Lagrange Equation的更多相关文章
- 找新朋友---hdu1286(欧拉函数)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1286 欧拉函数:对正整数n,欧拉函数是求少于n的数中与n互质的数的数目: 素数(质数)指在一个大于1的 ...
- poj2478——Farey Sequence(欧拉函数)
Farey Sequence Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 18507 Accepted: 7429 D ...
- 欧拉函数&欧拉定理&降幂 总结
欧拉函数&欧拉定理&降幂 总结 标签:数学方法--数论 阅读体验:https://zybuluo.com/Junlier/note/1300214 这年头不总结一下是真的容易忘,老了老 ...
- HDU2824 The Euler function(欧拉函数)
题目求φ(a)+φ(a+1)+...+φ(b-1)+φ(b). 用欧拉筛选法O(n)计算出n以内的φ值,存个前缀和即可. φ(p)=p-1(p是质数),小于这个质数且与其互质的个数就是p-1: φ(p ...
- hdu 2824 The Euler function(欧拉函数)
题目链接:hdu 2824 The Euler function 题意: 让你求一段区间的欧拉函数值. 题解: 直接上板子. 推导过程: 定义:对于正整数n,φ(n)是小于或等于n的正整数中,与n互质 ...
- The Euler function(线性筛欧拉函数)
/* 题意:(n)表示小于n与n互质的数有多少个,给你两个数a,b让你计算a+(a+1)+(a+2)+......+b; 初步思路:暴力搞一下,打表 #放弃:打了十几分钟没打完 #改进:欧拉函数:具体 ...
- HDU2824-The Euler function-筛选法求欧拉函数+求和
欧拉函数: φ(n)=n*(1-1/p1)(1-1/p2)....(1-1/pk),其中p1.p2-pk为n的所有素因子.比如:φ(12)=12*(1-1/2)(1-1/3)=4.可以用类似求素数的筛 ...
- 『素数 Prime判定和线性欧拉筛法 The sieve of Euler』
素数(Prime)及判定 定义 素数又称质数,一个大于1的自然数,除了1和它自身外,不能整除其他自然数的数叫做质数,否则称为合数. 1既不是素数也不是合数. 判定 如何判定一个数是否是素数呢?显然,我 ...
- hdu 2824 The Euler function 欧拉函数打表
The Euler function Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
随机推荐
- 冒泡排序&直接插入排序&快速排序
一.冒泡排序 0 1 2 3 4 5 假设有一个6个数的数组,0,1,2,3,4,5是索引,冒泡排序就是相邻两个对比,比如5和4比,如果满足条件就互 ...
- oracle merge into 新增或者修改
merge into sn_balance b1 using(select 'admin' as userid,1 as type1 from dual) b2 on(b1.userid=b2.use ...
- 机器学习-RBF高斯核函数处理
机器学习-RBF高斯核函数处理 SVM高斯核函数-RBF优化 重要了解数学的部分: 协方差矩阵,高斯核函数公式. 个人建议具体的求法还是看下面的核心代码吧,更好理解,反正就我个人而言,烦躁的公式,还 ...
- 指针版的PStash(用一个void指针数组, 来保存存入元素的地址) 附模板化实现 p321
由容器PStash的使用者,负责清除容器中的所有指针.所以用户必须记住放到容器中的是什么类型,在取出时,把取出的void指针转换成对应的类型指针,然后 'delete 转换后的对象指针',才能在清除时 ...
- [转]关于SSH与SSM的组成及其区别
前言 当下SpringBoot盛行,咱再聊聊SpringBoot盛行之前的框架组合,当做复习巩固哈. 在聊之前,得先说说MVC,MVC全名是Model View Controller,是模型(mode ...
- spring boot The request was rejected because the URL was not normalized
升级spring boot 1.5.10.RELEASE 版本后,突然发现之前能Nginx代理能请求的地址抛如下异常: org.springframework.security.web.firewal ...
- [学习笔记]k短路
A*:我已经忘了怎么写了,反正n=30,m=1000都能卡掉... 正解:可持久化左偏树+堆维护可能集合 原论文:http://www.docin.com/p-1387370338.html 概括: ...
- 一个基于 Slab 缓存的 scull: scullc
是时候给个例子了. scullc 是一个简化的 scull 模块的版本, 它只实现空设备 -- 永久 的内存区. 不象 scull, 它使用 kmalloc, scullc 使用内存缓存. 量子的大小 ...
- CF1169(div2)题解报告
CF1169(div2)题解报告 A 不管 B 首先可以证明,如果存在解 其中必定有一个数的出现次数大于等于\(\frac{m}{2}\) 暴力枚举所有出现次数大于等于$\frac{m}{2} $的数 ...
- dotnet 通过 WMI 获取指定进程的输入命令行
本文告诉大家如何使用 WMI 通过 Process 获取这个进程传入的命令行 使用下面代码,使用 Win32_Process 拿到所有的进程,通过 WHERE 判断当前的进程,然后拿到进程传入的命令 ...