神奇的dp优化。

考虑6维状态的dp,分别表示三行高和宽,显然MLE&&TLE。

把高排个序,从大到小往架上放,那么若不是重开一行便对高度没有影响。

然后求出宽度的sum,dp[i][j]表示第一行放了i的宽度,二行放了j的宽度,三行放了sum-i-j宽度的最小的高度值。

先把所有书放在第三行,然后从第二本开始转移,考虑往其他行移的情况。

避免MLE要滚动数组。

注意最后更新答案时保证i>0&&j>0&&sum-i-j>0且dp[i][j]!=INF;

//Twenty
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<queue>
#include<vector>
#include<ctime>
typedef long long LL;
using namespace std;
int n,sum,f[][][],ans=1e9;
struct book {
int hi,ti;
friend bool operator <(const book &A,const book &B) {
return A.hi>B.hi;
}
}bk[];
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%d%d",&bk[i].hi,&bk[i].ti);
sort(bk+,bk+n+);
for(int i=;i<=n;i++) sum+=bk[i].ti;
int o=;
memset(f,/,sizeof(f));
f[][][]=bk[].hi;
for(int i=;i<=n;i++) {
o^=;
for(int j=;j<=sum;j++) {
for(int k=;k<=sum&&j+k<sum;k++) {
f[o][j][k]=min(f[o][j][k],f[o^][j][k]);
if(!j) f[o][j+bk[i].ti][k]=min(f[o][j+bk[i].ti][k],f[o^][j][k]+bk[i].hi);
else f[o][j+bk[i].ti][k]=min(f[o][j+bk[i].ti][k],f[o^][j][k]);
if(!k) f[o][j][k+bk[i].ti]=min(f[o][j][k+bk[i].ti],f[o^][j][k]+bk[i].hi);
else f[o][j][k+bk[i].ti]=min(f[o][j][k+bk[i].ti],f[o^][j][k]);
if(i==n&&j!=&&k!=&&f[o][j][k]!=) {
ans=min(ans,f[o][j][k]*max(max(j,k),sum-j-k));
}
}
}
}
printf("%d\n",ans);
return ;
}

BZOJ 1933 [Shoi2007]Bookcase 书柜的尺寸的更多相关文章

  1. BZOJ 1933 [Shoi2007]Bookcase 书柜的尺寸 ——动态规划

    状态设计的方法很巧妙,六个值 h1,h2,h3,t1,t2,t3,我们发现t1,t2,t3可以通过前缀和优化掉一维. 然后考虑把h留下还是t留下,如果留下h显然t是会发生改变的,一个int存不下. 如 ...

  2. BZOJ1933: [Shoi2007]Bookcase 书柜的尺寸

    传送门 很容易看出来这是一道DP题,那么怎么设置状态就成了这道题的关键.本题有点特殊的地方是有两个维度的状态,而每个维度又有三个部分的参数,如果全部设置出来的话肯定会MLE.首先对书的厚度状态简化. ...

  3. [Shoi2007]Bookcase 书柜的尺寸 dp

    这道dp算是同类型dp中比较难的了,主要难点在于设置状态上: 如果像平时那样设置,必定爆空间没商量: 下面是一种思路: 先把输入进来的数据按h从大到小排序,这样就可以大大减少状态数, 然后设f[i][ ...

  4. 书柜的尺寸(bzoj 1933)

    Description Tom不喜欢那种一字长龙式的大书架,他只想要一个小书柜来存放他的系列工具书.Tom打算把书柜放在桌子的后面,这样需要查书的时候就可以不用起身离开了.显然,这种书柜不能太大,To ...

  5. [SHOI2007] 书柜的尺寸 思维题+Dp+空间优化

    Online Judge:Luogu-P2160 Label:思维题,Dp,空间优化 题面: 题目描述 给\(N\)本书,每本书有高度\(Hi\),厚度\(Ti\).要摆在一个三层的书架上. 书架的宽 ...

  6. 最小投票BZOJ 1934([Shoi2007]Vote 善意的投票-最小割)

    上班之余抽点时间出来写写博文,希望对新接触的朋友有帮助.今天在这里和大家一起学习一下最小投票 1934: [Shoi2007]Vote 好心的投票 Time Limit: 1 Sec Memory L ...

  7. BZOJ 1934: [Shoi2007]Vote 善意的投票 最小割

    1934: [Shoi2007]Vote 善意的投票 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnl ...

  8. BZOJ 1935: [Shoi2007]Tree 园丁的烦恼( 差分 + 离散化 + 树状数组 )

    假如矩阵范围小一点就可以直接用二维树状数组维护. 这道题,  差分答案, 然后一维排序, 另一维离散化然后树状数组维护就OK了. ----------------------------------- ...

  9. BZOJ 1935: [Shoi2007]Tree 园丁的烦恼 +CDQ分治

    1935: [Shoi2007]Tree 园丁的烦恼 参考与学习:https://www.cnblogs.com/mlystdcall/p/6219421.html 题意 在一个二维平面中有n颗树,有 ...

随机推荐

  1. thinkphp 判断请求类型

    判断请求类型 在很多情况下面,我们需要判断当前操作的请求类型是GET .POST .PUT或 DELETE,一方面可以针对请求类型作出不同的逻辑处理,另外一方面有些情况下面需要验证安全性,过滤不安全的 ...

  2. 线性dp——cf1012C好题

    比较套路的dp题 /* dp[i][j][0|1]:前i座山盖了j座房子,第i座不盖|盖 dp[i][j][0]=min( dp[i-1][j][0] , dp[i-1][j][1]+max(0,a[ ...

  3. PSCC2019常用基础操作

    一.常用设置 1.界面设置(快捷键Ctrl+K):可以对PS界面的颜色.导出格式.性能等等进行设置(这里暂存盘建议设置D盘或F盘,默认C盘). 2.常用面板整理(菜单栏->窗口) 二.常用快捷键 ...

  4. 阿里P8架构师谈:数据库分库分表、读写分离的原理实现,使用场景

    本文转载自:阿里P8架构师谈:数据库分库分表.读写分离的原理实现,使用场景 为什么要分库分表和读写分离? 类似淘宝网这样的网站,海量数据的存储和访问成为了系统设计的瓶颈问题,日益增长的业务数据,无疑对 ...

  5. python环境变量配置 - CSDN博客

    一.下载: 1.官网下载python3.0系列(https://www.python.org/) 2.下载后图标为: 二.安装: Window下: 1.安装路径: 默认安装路径:C:\python35 ...

  6. C# 字符串string和内存流MemoryStream及比特数组byte[]之间相互转换

    定义string变量为str,内存流变量为ms,比特数组为bt 1.字符串转比特数组 复制代码 代码如下: (1)byte[] bt=System.Text.Encoding.Default.GetB ...

  7. selenium基础(脚本模块化)

    selenium基础(脚本模块化)

  8. python语句结构(while循环)

    while循环 pythhon中while语句的一般形式 while 判断语句: 执行语句 i=0 sum=0 while i<=100: sum+=i i=i+1 print(sum) #运行 ...

  9. rsyslog 服务器重启后 发现不能接受到外部日志 只能接受本地日志 关闭防火墙即可

    rsyslog 服务器重启后 发现不能接受到外部日志 只能接受本地日志  关闭防火墙即可 1 关闭防火墙: # systemctl stop firewalld 2 将SELINUX设置为disabl ...

  10. Python遇到的第一个问题

    1.运行如下代码: 输入成绩80之后报错: 2.问题分析:字符串跟整型不能比 3.查看score的类型 print(type(score)), 由此看出score是string类型的,因为input接 ...