树上点分治 poj 1741
Define dist(u,v)=The min distance between node u and v.
Give an integer k,for every pair (u,v) of vertices is called valid if and only if dist(u,v) not exceed k.
Write a program that will count how many pairs which are valid for a given tree.
Input
test case contains two integers n, k. (n<=10000) The following n-1
lines each contains three integers u,v,l, which means there is an edge
between node u and v of length l.
The last test case is followed by two zeros.
Output
Sample Input
5 4
1 2 3
1 3 1
1 4 2
3 5 1
0 0
Sample Output
8
题目分析 : 给定一棵树,以及树上边的关系大小,问你又多少对点的距离是小于等于所给定的 d 的
思路分析 : 树上点分治的板子题,首先寻找树的重心,以重心为根结点,寻求所有符合题意要求的点对,但是这样计算会算出一些不符合题目的点对,在减去即可,此时当遍历到一个新的结点时,此时的情况又可以当成最初的情况,找重心的时候要注意,对它的子树来说,总的结点数是小于 n 的!!!
最后的复杂度是n logn logn 其中每次快排是nlogn 而递归的深度为logn
代码示例 :
const int maxn = 1e4+5;
const int inf = 0x3f3f3f3f;
#define ll long long int n, m;
struct node
{
int to, cost;
node(int _to = 0, int _cost = 0):to(_to), cost(_cost){}
};
vector<node>ve[maxn];
int root;
int size[maxn], mx[maxn]; // size表示每个结点所连的结点数, mx表示对每个根结点所连的最大结点子树有多少的结点
int balance;
bool done[maxn];
int ans = 0;
int numm; // 表示结点总数 void getroot(int x, int fa){
size[x] = 1, mx[x] = 0; for(int i = 0; i < ve[x].size(); i++){
int to = ve[x][i].to;
if (to == fa || done[to]) continue;
getroot(to, x);
size[x] += size[to];
mx[x] = max(mx[x], size[to]);
}
mx[x] = max(mx[x], numm-size[x]); // 对子树在寻找子树的重心的过程中,子树的总结点数是会变小的
if (mx[x] < balance) {balance = mx[x], root = x;}
} int cnt = 0;
int dep[maxn];
void dfssize(int x, int fa, int d){
dep[cnt++] = d; for(int i = 0; i < ve[x].size(); i++){
int to = ve[x][i].to;
int cost = ve[x][i].cost;
if (to == fa || done[to]) continue;
dfssize(to, x, d+cost);
}
} int cal(int x, int d){
cnt = 0;
dfssize(x, x, d);
sort(dep, dep+cnt);
int l = 0, r = cnt-1;
int sum = 0; while(l < r){
if (dep[l]+dep[r] <= m){
sum += r-l;
l++;
}
else r--;
}
//printf("sum = %d \n", sum);
//system("pause");
return sum;
} void dfs(int x){
done[x] = true;
ans += cal(x, 0); for(int i = 0; i < ve[x].size(); i++){
int to = ve[x][i].to;
int cost = ve[x][i].cost; if (done[to]) continue;
ans -= cal(to, cost);
balance = inf;
numm = size[to]; // 这里是重点,因为这个地方一直T,还以为写的代码有问题
getroot(to, to);
//printf("root = %d\n", root);
dfs(root);
}
} int a, b, w;
int main() {
while(scanf("%d%d", &n, &m) && n+m){
for(int i = 0; i <= 10000; i++) ve[i].clear();
memset(done, false, sizeof(done));
for(int i = 1; i < n; i++){
scanf("%d%d%d", &a, &b, &w);
ve[a].push_back(node(b, w));
ve[b].push_back(node(a, w));
}
ans = 0;
balance = inf;
numm = n;
getroot(1, 1);
//printf("root = %d\n", root);
dfs(root);
printf("%d\n", ans);
}
return 0;
}
树上点分治 poj 1741的更多相关文章
- 点分治——POJ 1741
写的第一道点分治的题目,权当认识点分治了. 点分治,就是对每条过某个点的路径进行考虑,若路径不经过此点,则可以对其子树进行考虑. 具体可以看menci的blog:点分治 来看一道例题:POJ 1741 ...
- 树分治 poj 1741
n k n个节点的一棵树 k是距离 求树上有几对点距离<=k; #include<stdio.h> #include<string.h> #include<algo ...
- POJ 1741 Tree 树上点分治
题目链接:http://poj.org/problem?id=1741 题意: 给定一棵包含$n$个点的带边权树,求距离小于等于K的点对数量 题解: 显然,枚举所有点的子树可以获得答案,但是朴素发$O ...
- 【POJ 1741】 Tree (树的点分治)
Tree Description Give a tree with n vertices,each edge has a length(positive integer less than 100 ...
- POJ 1741 Tree 求树上路径小于k的点对个数)
POJ 174 ...
- POJ 1741.Tree and 洛谷 P4178 Tree-树分治(点分治,容斥版) +二分 模板题-区间点对最短距离<=K的点对数量
POJ 1741. Tree Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 34141 Accepted: 11420 ...
- poj 1741 树的点分治(入门)
Tree Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 18205 Accepted: 5951 Description ...
- poj 1741 Tree(树的点分治)
poj 1741 Tree(树的点分治) 给出一个n个结点的树和一个整数k,问有多少个距离不超过k的点对. 首先对于一个树中的点对,要么经过根结点,要么不经过.所以我们可以把经过根节点的符合点对统计出 ...
- poj 1741 楼教主男人八题之中的一个:树分治
http://poj.org/problem? id=1741 Description Give a tree with n vertices,each edge has a length(posit ...
随机推荐
- 2018-12-25-dot-net-double-数组转-float-数组
title author date CreateTime categories dot net double 数组转 float 数组 lindexi 2018-12-25 09:27:46 +080 ...
- dotnet 通过 WMI 获取系统安装软件
本文告诉大家如何通过 WMI 获取系统安装的软件,这个方法不能获取全部的软件 通过 Win32_Product 可以获取系统安装的软件 var mc = "Win32_Product&quo ...
- 【u202】家庭作业
Time Limit: 1 second Memory Limit: 128 MB [问题描述] 老师在开学第一天就把所有作业都布置了,每个作业如果在规定的时间内交上来的话才有学分.每个作业的截止日期 ...
- 1024程序员节!(JAVA Code)
点我:传送门 程序员节快乐~ 水水题 A import java.util.*; import java.io.*; public class Main { public static void m ...
- computed计算属性(二)
一.说明 在computed中,可以定义一些属性,即计算属性. 计算属性本质是方法,只是在使用这些计算属性的时候,把他们的名称直接当作属性来使用,并不会把计算属性当作方法去调用,不需要加小括号()调用 ...
- 关于axios的一些封装
关于Axios的封装 为何需要在封装 应用场景,项目中涉及100个AJAX请求,其中: 1.其中60个需要在请求头header设置token headers: {token: token}用于权限校验 ...
- 2018-2-13-git-合并两个仓库
title author date CreateTime categories git 合并两个仓库 lindexi 2018-2-13 17:23:3 +0800 2018-2-13 17:23:3 ...
- linux c函数参考手册
一.字符测试 isalnum(测试字符是否为英文字母或数字) isalpha(测试字符是否为英文字母) isascii(测试字符是否为ascii码字符) isblank(测试字符是否为空格字符) is ...
- asdf
[root@host01 ~]# netstat -n | awk '/^tcp/ {++S[$NF]} END {for(a in S) print a, S[a]}' TIME_WAIT 3 CL ...
- webhook功能概述
1.什么是webhook? webhooks是一个api概念,是微服务api的使用范式之一,也被成为反向api,即:前端不主动发送请求,完全由后端推送. 举个常用例子,比如你的好友发了一条朋友圈,后端 ...