Miller-Rabin素数测试算法
\(Miller-Rabin\)素数测试
用途
判断整数\(n\)是否是质数,在\(n\)较小的情况下,可以使用试除法,时间复杂度为\(O(\sqrt n)\)。但当\(n\)的值较大的时候,朴素的试除法已经不能在规定时间内解决问题。此时,我们可以用\(Miller-Rabin\)素数测试算法,时间复杂度可以降低至\(O(\log_2n)\)。
引理
费马小定理
若\(a,p \in \mathbb{Z}\),\(p\)为质数,则
\]
在此不给出证明。
二次探测定理
描述
若\(a,p \in \mathbb{Z}\),\(a^{2} \equiv 1(mod\;p)\),\(p\)为质数,则\(a \equiv 1(mod\;p)\)或\(a \equiv p-1(mod\;p)\)。
证明
&\because a^{2} \equiv 1(mod\;p)\\
&\therefore p \mid (a^{2}-1)\\
&\therefore p \mid (a+1)(a-1)\\
&\because p为质数\\
&\therefore p \mid (a+1) 或(a-1)\\
&\therefore a+1 \equiv 0(mod\;p)或a-1 \equiv 0(mod\;p)\\
&\therefore a \equiv 1 (mod\;p)或a \equiv p-1 (mod\;p)\\
\end{aligned}
\]
过程
根据费马小定理,我们可以得到一个真命题:若\(p\)为质数,则\(a^{p-1} \equiv 1(mod\;p)\)。我们考虑这一命题的逆命题:若\(a^{p-1} \equiv 1\),则\(p\)为质数。我们会惊讶地发现,这一逆命题在大多数情况下竟然成立。也就是说,我们得到了一种有效地判断质数的方法,即取一个底数\(a\),判断它与所需判断的数\(p\)是否满足这一等式。尽管有时可能出错,但这一算法的效率相比起朴素算法来说有了很大的提升。
接下来我们要做的就是提高这一算法的正确性。首先想到的自然是取多个\(a\)值,在常见的题目中,取\([2,29]\)大概就能通过测试,当然也可以随机生成,注意\(a\)的值应该小于\(p\)。第二个优化是基于二次探测定理的。设\(p=2^nm+1\),则可先算出\(a^m\),然后再平方\(n\)次,求得\(a^{p-1}\)。在这一过程中,若某次平方后所得的结果为\(1\)但上次平方后的结果不等于\(p-1\)或\(1\),就出现了矛盾,从而就不满足\(p\)为质数这一前提。最后再次判断是否满足等式即可。
注意乘法可能越界,应拆成类似快速幂的算法。
代码
const int prime[10]={2,3,5,7,11,13,17,19,23,29};
long long multi(long long a,long long b,long long p)
{
long long t=0;
while(b)
{
if(b&1)
t=(t+a)%p;
a=(a<<1)%p;
b>>=1;
}
return t;
}
long long power(long long a,long long b,long long p)
{
long long t=1;
while(b)
{
if(b&1)
t=multi(t,a,p);
a=multi(a,a,p);
b>>=1;
}
return t;
}
bool Miller_Rabin(long long x)
{
if(x==2)
return true;
if(!(x&1)||x<2)
return false;
long long t=x-1,exponent=0;
while(!(t&1))
{
t>>=1;
++exponent;
}
for(int i=0;i<10&&prime[i]<x;++i)
{
long long m=power(prime[i],t,x);
for(int j=0;j<exponent;++j)
{
long long n=multi(m,m,x);
if(n==1&&m!=1&&m!=x-1)
return false;
m=n;
}
if(m!=1)
return false;
}
return true;
}
Miller-Rabin素数测试算法的更多相关文章
- POJ1811_Prime Test【Miller Rabin素数测试】【Pollar Rho整数分解】
Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...
- HDU1164_Eddy's research I【Miller Rabin素数测试】【Pollar Rho整数分解】
Eddy's research I Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- Miller Rabin素数检测与Pollard Rho算法
一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是 ...
- POJ2429_GCD & LCM Inverse【Miller Rabin素数測试】【Pollar Rho整数分解】
GCD & LCM Inverse Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9756Accepted: 1819 ...
- Miller-Rabin素数测试算法(POJ1811Prime Test)
题目链接:http://poj.org/problem?id=1811 题目解析:2<=n<2^54,如果n是素数直接输出,否则求N的最小质因数. 求大整数最小质因数的算法没看懂,不打算看 ...
- POJ1811_Prime Test【Miller Rabin素数測试】【Pollar Rho整数分解】
Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...
- 素数测试算法(基于Miller-Rabin的MC算法) // Fermat素数测试法
在以往判断一个数n是不是素数时,我们都是采用i从2到sqrt(n)能否整除n.如果能整除,则n是合数;否则是素数.但是该算法的时间复杂度为O(sqrt(n)),当n较大时,时间性能很差,特别是在网络安 ...
- Miller Rabin素数检测
#include<iostream> #include<cstdio> #include<queue> #include<cstring> #inclu ...
- Miller-Rabbin随机性素数测试算法
//**************************************************************** // Miller_Rabin 算法进行素数测试 //速度快,而且 ...
随机推荐
- P1093 铺地毯
题目描述 为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯.一共有 \(n\) 张地毯,编号从 \(1\) 到 \(n\) .现在将这些地毯按 ...
- WNMP nginx+php5+mysql测试环境安装(Windows7)(二)
3. 安装Zend Optimizer Zend Optimizer对那些在被最终执行之前由Run-Time Complier产生的代码进行优化,提高PHP应用程序的执行速度.一般情况下,执行使用Ze ...
- Linux 内核探测和去连接的细节
在之前章节描述的 struct usb_driver 结构中, 驱动指定 2 个 USB 核心在合适的时候 调用的函数. 探测函数被调用, 当设备被安装时, USB 核心认为这个驱动应当处理; 探测 ...
- 服务端CURL请求
服务端与服务端之间,也存在接口编程. 比如我们网站服务端,需要发送短信.发送邮件.查询快递等,都需要调用第三方平台的接口. 1.php中发送请求 ①file_get_contents函数 :传递完整的 ...
- 牛客多校第3场 J 思维+树状数组+二分
牛客多校第3场 J 思维+树状数组+二分 传送门:https://ac.nowcoder.com/acm/contest/883/J 题意: 给你q个询问,和一个队列容量f 询问有两种操作: 0.访问 ...
- git之github下载篇(ssh需要配置密钥)
1.使用git命令行下载 在想要下载的文件夹打开命令行 git clone ssh 成功如图所示 2.使用小乌龟图形界面克隆 在文件夹右键鼠标 如果复制有链接,会自动填入.点击确定 成功后如图
- 前端——BOM与DOM
目录 前戏 window对象 window的子对象 navigator对象(了解即可) screen对象(了解即可) history对象(了解即可) location对象 弹出框 计时相关 DOM H ...
- 别怕,"卷积"其实很简单(上)
文章来自我的CSDN同名博客,欢迎文末扫码关注~ 前言 相信很多时候,当我们在看到“卷积”时,总是处于一脸懵逼的状态,不但因为它的本身概念比较难理解,还因为它在不同的应用中发挥出的变幻莫测的作用也 ...
- 选题Scrum立会报告+燃尽图 04
此作业的要求参见:https://edu.cnblogs.com/campus/nenu/2019fall/homework/8682 组长:杨天宇 组员:魏新,罗杨美慧,王歆瑶,徐丽君 组名:组长 ...
- selenium自动化测试之--验证码处理
由于登录反爬措施的越来越麻烦,甚至出现了12306这种看图识物的无敌验证码,我只能说,我选择死亡.这就衍生出了使用selenium来获取获取cookies. 因为经常会出现验证码,导致我们ui自动化测 ...