洛谷P1291 [SHOI2002]百事世界杯之旅
题目链接:
题目分析:
收集邮票的弱弱弱弱化版,因为是期望,考虑倒推
设\(f[i]\)表示现在已经买齐了\(i\)种,距离买完它的剩余期望次数
那么下一次抽有\(\frac{i}{n}\)的概率抽到已经有的,有\(\frac{n - i}{n}\)的概率抽到还没有的
那这两种情况的期望分别是\(\frac{i}{n} * f[i]\)和\(\frac{n - i}{n} * f[i + 1]\),再加上它自己的期望\(1\)
有\(f[i] = f[i] * \frac{i}{n} + \frac{n - i}{n} * f[i + 1] + 1\)
化简一下得到\(f[i] = f[i + 1] + \frac{n}{n - i}\)
倒回来\(dp\)即可
输出比较恶心,开两个数组分别记录状态的分子和分母,然后手写一下约分之类的函数
代码:
#include <bits/stdc++.h>
#define N (1000 + 10)
#define int long long
using namespace std;
inline int read() {
int cnt = 0, f = 1; char c = getchar();
while (!isdigit(c)) {if (c == '-') f = -f; c = getchar();}
while (isdigit(c)) {cnt = (cnt << 3) + (cnt << 1) + c - '0'; c = getchar();}
return cnt * f;
}
int n;
int f1[N], f2[N];
int gcd(int a, int b) {return b ? gcd(b, a % b) : a;}
int lcm(int a, int b) {return a * b / gcd(a, b);}
int calc1(int x, int y, int x_, int y_) {
int LCM = lcm(y, y_);
int d1 = LCM / y, d2 = LCM / y_;
int ans = x * d1 + x_ * d2;
return ans;
}
int calc2(int x, int y, int x_, int y_) {
int LCM = lcm(y, y_);
return LCM;
}
void solve(int &x, int &y) {
int GCD = gcd(x, y);
x /= GCD, y /= GCD;
}
int get_digit(int x) {
int cnt = 0;
while(x) {
++cnt;
x /= 10;
}
return cnt;
}
int ans1, ans2, ans3;
signed main(){
n = read();
f1[n] = 0, f2[n] = 0;
f1[n - 1] = n, f2[n - 1] = 1;
for (register int i = n - 2; ~i; --i) {
f1[i] = calc1(f1[i + 1], f2[i + 1], n, n - i);
f2[i] = calc2(f1[i + 1], f2[i + 1], n, n - i);
solve(f1[i], f2[i]);
}
ans1 = f1[0] / f2[0];
if (f1[0] % f2[0] == 0) return printf("%lld", ans1), 0;
f1[0] = f1[0] % f2[0];
int c1 = get_digit(ans1);
int c2 = get_digit(f2[0]);
for (register int i = 1; i <= c1; i++) printf(" ");
printf("%lld\n%lld", f1[0], ans1);
for (register int i = 1; i <= c2; i++) printf("-");
printf("\n");
for (register int i = 1; i <= c1; i++) printf(" ");
printf("%lld", f2[0]);
return 0;
}
洛谷P1291 [SHOI2002]百事世界杯之旅的更多相关文章
- 洛谷 P1291 [SHOI2002]百事世界杯之旅 解题报告
P1291 [SHOI2002]百事世界杯之旅 题目描述 "--在2002年6月之前购买的百事任何饮料的瓶盖上都会有一个百事球星的名字.只要凑齐所有百事球星的名字,就可参加百事世界杯之旅的抽 ...
- 洛谷P1291 [SHOI2002]百事世界杯之旅 [数学期望]
题目传送门 百事世界杯之旅 题目描述 “……在2002年6月之前购买的百事任何饮料的瓶盖上都会有一个百事球星的名字.只要凑齐所有百事球星的名字,就可参加百事世界杯之旅的抽奖活动,获得球星背包,随声听, ...
- 洛谷P1291 [SHOI2002]百事世界杯之旅(期望DP)
题目描述 “……在2002年6月之前购买的百事任何饮料的瓶盖上都会有一个百事球星的名字.只要凑齐所有百事球星的名字,就可参加百事世界杯之旅的抽奖活动,获得球星背包,随声听,更克赴日韩观看世界杯.还不赶 ...
- 洛谷P1291 [SHOI2002]百事世界杯之旅——期望DP
题目:https://www.luogu.org/problemnew/show/P1291 水水的经典期望DP: 输出有毒.(其实也很简单啦) 代码如下: #include<iostream& ...
- ●洛谷P1291 [SHOI2002]百事世界杯之旅
题链: https://www.luogu.org/recordnew/show/5861351题解: dp,期望 定义dp[i]表示还剩下i个盖子没收集时,期望还需要多少次才能手机完. 初始值:dp ...
- 洛谷 1291 [SHOI2002]百事世界杯之旅
题目:https://www.luogu.org/problemnew/show/P1291 大水题!套路!模板! 稍微注意一下输出就行了. #include<iostream> #inc ...
- P1291 [SHOI2002]百事世界杯之旅(概率)
P1291 [SHOI2002]百事世界杯之旅 设$f(n,k)$表示共n个名字,剩下k个名字未收集到,还需购买饮料的平均次数 则有: $f(n,k)=\frac{n-k}{n}*f(n,k) + \ ...
- luogu P1291 [SHOI2002]百事世界杯之旅
题目链接 luogu P1291 [SHOI2002]百事世界杯之旅 题解 设\(f[k]\)表示还有\(k\)个球员没有收集到的概率 再买一瓶,买到的概率是\(k/n\),买不到的概率是\((n-k ...
- P1291 [SHOI2002]百事世界杯之旅
题目描述 “……在2002年6月之前购买的百事任何饮料的瓶盖上都会有一个百事球星的名字.只要凑齐所有百事球星的名字,就可参加百事世界杯之旅的抽奖活动,获得球星背包,随声听,更克赴日韩观看世界杯.还不赶 ...
随机推荐
- windows下装LINUX后,进不了系统
在网上找了一款叫"DisckGenius"的软件,运行后选“硬盘”/“重建主引导记录(MBR)”,然后重启,就正常了. 还有系统盘最好是FAT32格式的.
- Mac Eclipse常用快捷键
Option + Command + X: 运行 Command + O:显示大纲 Command + 1:快速修复 Command + D:删除当前行 Command + Option + ↓:复制 ...
- selenium基础(滚动条操作)
滚动条操作:当待操作的元素在页面可是区域外时,要将待操作的元素滚动到可视区域当中 步骤:1.先找要将要操作的元素element = driver.find_element_by_xxxx(" ...
- shell 命令 文件查看ls,复制cp,移动mv,查看文件内容cat more less,查看文件信息 file
1. 查看文件 ls ls -l 查看文件详细信息 ls -a 查看所有文件(包含隐藏文件) ls -lh 带单位显示文件大小 ls -i 查看文件的节点号(相当身份证唯一) 2 ...
- 不会在CentOS 8上安装htop?今天教你正确安装
它显示有关CPU和RAM利用率,正在执行的任务,平均负载和正常运行时间的信息.另外,htop显示所有正在运行的进程的列表,并且还可以树状格式显示这些进程. htop优于top的优势包括 以颜色标记输出 ...
- nginx的配置:目的是使用nginx反向代理后,应用程序获取用户真实ip
一.了解nginx Nginx是lgor Sysoev为俄罗斯访问量第二的rambler.ru站点设计开发的.从2004年发布至今,凭借开源的力量,已经接近成熟与完善. Nginx功能丰富,可作为HT ...
- RocketMQ在linux下安装部署
本博客以当前RocketMQ最新版介绍:v4.4.0 环境要求 64位JDK 1.8+; Maven 3.2.x; // 源码编译时需要用到 二进制文件安装 下载二进制文件:http://mirror ...
- js 中继承方式小谈
题外话 前段时间面试中笔试题有这道题目: 请实现一个继承链,要求如下: 构造函数A():构造函数中有consoleA方法,可以实现console.log("a") 实例对象 a:a ...
- C#字符串、字节数组和内存流间的相互转换 - IT浪潮之巅
定义string变量为str,内存流变量为ms,比特数组为bt 1.字符串=>比特数组 (1)byte[] bt=System.Text.Encoding.Default.GetBytes(&q ...
- HDU-1852-Beijing 2008-一个神奇的公式求逆元
As we all know, the next Olympic Games will be held in Beijing in 2008. So the year 2008 seems a lit ...