SPFA导读及介绍(转载)
适用范围:给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便派上用场了。 我们约定有向加权图G不存在负权回路,即最短路径一定存在。当然,我们可以在执行该算法前做一次拓扑排序,以判断是否存在负权回路,但这不是我们讨论的重点。
算法思想:我们用数组d记录每个结点的最短路径估计值,用邻接表来存储图G。我们采取的方法是动态逼近法:设立一个先进先出的队列用来保存待优化的结点,优化时每次取出队首结点u,并且用u点当前的最短路径估计值对离开u点所指向的结点v进行松弛操作,如果v点的最短路径估计值有所调整,且v点不在当前的队列中,就将v点放入队尾。这样不断从队列中取出结点来进行松弛操作,直至队列空为止
期望的时间复杂度O(ke), 其中k为所有顶点进队的平均次数,可以证明k一般小于等于2。
实现方法:
建立一个队列,初始时队列里只有起始点,再建立一个表格记录起始点到所有点的最短路径(该表格的初始值要赋为极大值,该点到他本身的路径赋为0)。然后执行松弛操作,用队列里有的点作为起始点去刷新到所有点的最短路,如果刷新成功且被刷新点不在队列中则把该点加入到队列最后。重复执行直到队列为空。
判断有无负环:
如果某个点进入队列的次数超过N次则存在负环(SPFA无法处理带负环的图)

首先建立起始点a到其余各点的
最短路径表格

首先源点a入队,当队列非空时:
1、队首元素(a)出队,对以a为起始点的所有边的终点依次进行松弛操作(此处有b,c,d三个点),此时路径表格状态为:

在松弛时三个点的最短路径估值变小了,而这些点队列中都没有出现,这些点
需要入队,此时,队列中新入队了三个结点b,c,d
队首元素b点出队,对以b为起始点的所有边的终点依次进行松弛操作(此处只有e点),此时路径表格状态为:

在最短路径表中,e的最短路径估值也变小了,e在队列中不存在,因此e也要
入队,此时队列中的元素为c,d,e
队首元素c点出队,对以c为起始点的所有边的终点依次进行松弛操作(此处有e,f两个点),此时路径表格状态为:

在最短路径表中,e,f的最短路径估值变小了,e在队列中存在,f不存在。因此
e不用入队了,f要入队,此时队列中的元素为d,e,f
队首元素d点出队,对以d为起始点的所有边的终点依次进行松弛操作(此处只有g这个点),此时路径表格状态为:

在最短路径表中,g的最短路径估值没有变小(松弛不成功),没有新结点入队,队列中元素为f,g
队首元素f点出队,对以f为起始点的所有边的终点依次进行松弛操作(此处有d,e,g三个点),此时路径表格状态为:

在最短路径表中,e,g的最短路径估值又变小,队列中无e点,e入队,队列中存在g这个点,g不用入队,此时队列中元素为g,e
队首元素g点出队,对以g为起始点的所有边的终点依次进行松弛操作(此处只有b点),此时路径表格状态为:

在最短路径表中,b的最短路径估值又变小,队列中无b点,b入队,此时队列中元素为e,b
队首元素e点出队,对以e为起始点的所有边的终点依次进行松弛操作(此处只有g这个点),此时路径表格状态为:

在最短路径表中,g的最短路径估值没变化(松弛不成功),此时队列中元素为b
队首元素b点出队,对以b为起始点的所有边的终点依次进行松弛操作(此处只有e这个点),此时路径表格状态为:

在最短路径表中,e的最短路径估值没变化(松弛不成功),此时队列为空了
最终a到g的最短路径为14
SPFA导读及介绍(转载)的更多相关文章
- VPN理论简单介绍(转载)
标签:VPN理论简单介绍 原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://lvnian.blog.51cto.com/715528 ...
- Linux各目录及每个目录的详细介绍(转载)
[常见目录说明] 目录 /bin 存放二进制可执行文件(ls,cat,mkdir等),常用命令一般都在这里. /etc 存放系统管理和配置文件 /home 存放所有用户文件的根目录,是用户主目录的基点 ...
- python正则表达式re模块详细介绍--转载
本模块提供了和Perl里的正则表达式类似的功能,不关是正则表达式本身还是被搜索的字符串,都可以是Unicode字符,这点不用担心,python会处理地和Ascii字符一样漂亮. 正则表达式使用反斜杆( ...
- linux下各文件夹的结构说明及用途介绍(转载)
详细介绍文档 转载文章路径 /bin:二进制可执行命令. /dev:设备特殊文件. /etc:系统管理和配置文件. /etc/rc.d:启动的配 置文件和脚本. /home:用户主目录的基点,比如用户 ...
- [python爬虫] Selenium常见元素定位方法和操作的学习介绍(转载)
转载地址:[python爬虫] Selenium常见元素定位方法和操作的学习介绍 一. 定位元素方法 官网地址:http://selenium-python.readthedocs.org/locat ...
- 算法笔记_071:SPFA算法简单介绍(Java)
目录 1 问题描述 2 解决方案 2.1 具体编码 1 问题描述 何为spfa(Shortest Path Faster Algorithm)算法? spfa算法功能:给定一个加权连通图,选取一个 ...
- Kubernetes1-K8s的简单介绍(转载)
一.简介 1.什么是Kubernetes 简称K8s,用8代替8个字符"ubernerte"而成的速写,K8s是一个开源的容器编排平台,它是一个跨主机集群的开源容器调度平台,用于管 ...
- VMware vCenter 6.0 安装及群集配置介绍(转载)
转载自http://blog.51cto.com/wzlinux/2094598 一.介绍 VMware vCenter Server 提供了一个可伸缩.可扩展的平台,为虚拟化管理奠定了基础.可集中管 ...
- G++ 参数介绍(转载)
g++参数介绍 From: http://www.cnblogs.com/lidan/archive/2011/05/25/2239517.html gcc and g++分别是gnu的c & ...
随机推荐
- 关于C/C++中数组元素的初始化
1.一维数组初始化 对于一维数组,其初始化有一个错误的观点是:一直以为 int a[256]={0};是把a的所有元素初始化为0,int a[256]={1};是把a所有的元素初始化为1. 数组可 ...
- Liferay 6.2 改造系列之四:重新整理Application添加页面默认提供的Portlet清单
经过2.3两步后,剩余Portlet已经不多,添加Application页面如下: 将用不到的Portlet隐藏起来:11 Portal目录 (Portal Directory) 将内嵌Protl ...
- HTML meta viewport属性说明(mark)
什么是Viewport 手机浏览器是把页面放在一个虚拟的“窗口”(viewport)中,通常这个虚拟的“窗口”(viewport)比屏幕宽,这样就不用把每个网页挤 到很小的窗口中(这样会破坏没有针对手 ...
- Android 中常用的布局
一.线性布局----LinearLayout horizontal 水平 <?xml version="1.0" encoding="utf-8"?& ...
- 《DSP using MATLAB》 示例Example4.1
今天开始看第4章,从开始看这本书到现在,过去一个多月,收获不少,继续坚持.
- DOM--6 向应用程序中加入ajax
组合技术 适当的ajax时对已有技术和下列思想的组合 语义化(X)HTML标记 文档对象模型(DOM) JavaScript XML 不同浏览器中,公共XMLHttpRequest方法 open(me ...
- 用super daemon xinetd进行安全配置
xinetd 可以进行安全性或者是其他的管理机制的控制,这些控制手段都可以让我们的服务更为安全,资源管理更为合理.一些对客户端开放较多权限的服务(例如telnet)或者本身不带有管理机制的服务就可以通 ...
- Codeforces Round #346 (Div. 2)
前三题水 A #include <bits/stdc++.h> typedef long long ll; const int N = 1e5 + 5; int main() { int ...
- POJ2942 Knights of the Round Table(点双连通分量 + 二分图染色)
题目大概说要让n个骑士坐成一圈,这一圈的人数要是奇数且大于2,此外有些骑士之间有仇恨不能坐在一起,问有多少个骑士不能入座. 双连通图上任意两点间都有两条不重复点的路径,即一个环.那么,把骑士看做点,相 ...
- -bash: /bin/rm: Argument list too long的解决办法
当目录下文件太多时,用rm删除文件会报错: -bash: /bin/rm: Argument list too long 提示文件数目太多. 解决的办法是使用如下命令: rm -fr ls 输出所有的 ...