SPFA导读及介绍(转载)
适用范围:给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便派上用场了。 我们约定有向加权图G不存在负权回路,即最短路径一定存在。当然,我们可以在执行该算法前做一次拓扑排序,以判断是否存在负权回路,但这不是我们讨论的重点。
算法思想:我们用数组d记录每个结点的最短路径估计值,用邻接表来存储图G。我们采取的方法是动态逼近法:设立一个先进先出的队列用来保存待优化的结点,优化时每次取出队首结点u,并且用u点当前的最短路径估计值对离开u点所指向的结点v进行松弛操作,如果v点的最短路径估计值有所调整,且v点不在当前的队列中,就将v点放入队尾。这样不断从队列中取出结点来进行松弛操作,直至队列空为止
期望的时间复杂度O(ke), 其中k为所有顶点进队的平均次数,可以证明k一般小于等于2。
实现方法:
建立一个队列,初始时队列里只有起始点,再建立一个表格记录起始点到所有点的最短路径(该表格的初始值要赋为极大值,该点到他本身的路径赋为0)。然后执行松弛操作,用队列里有的点作为起始点去刷新到所有点的最短路,如果刷新成功且被刷新点不在队列中则把该点加入到队列最后。重复执行直到队列为空。
判断有无负环:
如果某个点进入队列的次数超过N次则存在负环(SPFA无法处理带负环的图)

首先建立起始点a到其余各点的
最短路径表格

首先源点a入队,当队列非空时:
1、队首元素(a)出队,对以a为起始点的所有边的终点依次进行松弛操作(此处有b,c,d三个点),此时路径表格状态为:

在松弛时三个点的最短路径估值变小了,而这些点队列中都没有出现,这些点
需要入队,此时,队列中新入队了三个结点b,c,d
队首元素b点出队,对以b为起始点的所有边的终点依次进行松弛操作(此处只有e点),此时路径表格状态为:

在最短路径表中,e的最短路径估值也变小了,e在队列中不存在,因此e也要
入队,此时队列中的元素为c,d,e
队首元素c点出队,对以c为起始点的所有边的终点依次进行松弛操作(此处有e,f两个点),此时路径表格状态为:

在最短路径表中,e,f的最短路径估值变小了,e在队列中存在,f不存在。因此
e不用入队了,f要入队,此时队列中的元素为d,e,f
队首元素d点出队,对以d为起始点的所有边的终点依次进行松弛操作(此处只有g这个点),此时路径表格状态为:

在最短路径表中,g的最短路径估值没有变小(松弛不成功),没有新结点入队,队列中元素为f,g
队首元素f点出队,对以f为起始点的所有边的终点依次进行松弛操作(此处有d,e,g三个点),此时路径表格状态为:

在最短路径表中,e,g的最短路径估值又变小,队列中无e点,e入队,队列中存在g这个点,g不用入队,此时队列中元素为g,e
队首元素g点出队,对以g为起始点的所有边的终点依次进行松弛操作(此处只有b点),此时路径表格状态为:

在最短路径表中,b的最短路径估值又变小,队列中无b点,b入队,此时队列中元素为e,b
队首元素e点出队,对以e为起始点的所有边的终点依次进行松弛操作(此处只有g这个点),此时路径表格状态为:

在最短路径表中,g的最短路径估值没变化(松弛不成功),此时队列中元素为b
队首元素b点出队,对以b为起始点的所有边的终点依次进行松弛操作(此处只有e这个点),此时路径表格状态为:

在最短路径表中,e的最短路径估值没变化(松弛不成功),此时队列为空了
最终a到g的最短路径为14
SPFA导读及介绍(转载)的更多相关文章
- VPN理论简单介绍(转载)
标签:VPN理论简单介绍 原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://lvnian.blog.51cto.com/715528 ...
- Linux各目录及每个目录的详细介绍(转载)
[常见目录说明] 目录 /bin 存放二进制可执行文件(ls,cat,mkdir等),常用命令一般都在这里. /etc 存放系统管理和配置文件 /home 存放所有用户文件的根目录,是用户主目录的基点 ...
- python正则表达式re模块详细介绍--转载
本模块提供了和Perl里的正则表达式类似的功能,不关是正则表达式本身还是被搜索的字符串,都可以是Unicode字符,这点不用担心,python会处理地和Ascii字符一样漂亮. 正则表达式使用反斜杆( ...
- linux下各文件夹的结构说明及用途介绍(转载)
详细介绍文档 转载文章路径 /bin:二进制可执行命令. /dev:设备特殊文件. /etc:系统管理和配置文件. /etc/rc.d:启动的配 置文件和脚本. /home:用户主目录的基点,比如用户 ...
- [python爬虫] Selenium常见元素定位方法和操作的学习介绍(转载)
转载地址:[python爬虫] Selenium常见元素定位方法和操作的学习介绍 一. 定位元素方法 官网地址:http://selenium-python.readthedocs.org/locat ...
- 算法笔记_071:SPFA算法简单介绍(Java)
目录 1 问题描述 2 解决方案 2.1 具体编码 1 问题描述 何为spfa(Shortest Path Faster Algorithm)算法? spfa算法功能:给定一个加权连通图,选取一个 ...
- Kubernetes1-K8s的简单介绍(转载)
一.简介 1.什么是Kubernetes 简称K8s,用8代替8个字符"ubernerte"而成的速写,K8s是一个开源的容器编排平台,它是一个跨主机集群的开源容器调度平台,用于管 ...
- VMware vCenter 6.0 安装及群集配置介绍(转载)
转载自http://blog.51cto.com/wzlinux/2094598 一.介绍 VMware vCenter Server 提供了一个可伸缩.可扩展的平台,为虚拟化管理奠定了基础.可集中管 ...
- G++ 参数介绍(转载)
g++参数介绍 From: http://www.cnblogs.com/lidan/archive/2011/05/25/2239517.html gcc and g++分别是gnu的c & ...
随机推荐
- 【java 获取数据库信息】获取MySQL或其他数据库的详细信息
1.首先是 通过数据库获取数据表的详细列信息 package com.sxd.mysqlInfo.test; import java.sql.Connection; import java.sql.D ...
- LoadRunner11录制APP脚本(1)
1.测试准备: a.首先安装LoadRunner11.0的版本跟新
- fprintf, fscanf,printf,scanf使用时参数注意
在利用fprintf函数将数据按格式输出到文件中时,通常需要限定数据的格式,例如: FILE *f=fopen("d:\\1.txt","w+"); int a ...
- http://www.cnblogs.com/itsource/p/4266905.html
http://www.cnblogs.com/itsource/p/4266905.html
- 并查集(删除) UVA 11987 Almost Union-Find
题目传送门 题意:训练指南P246 分析:主要是第二种操作难办,并查集如何支持删除操作?很巧妙的方法:将并查集树上p的影响消除,即在祖先上(sz--, sum -= p),然后为p换上马甲:id[p] ...
- 转载:robotium typeText与enterText区别
solo.typeText和solo.enterText方法都可以对EditeText进行测试,达到的测试目的是一样的.存在几点不同: 1.实现上,typeText方法是robotium框架调用系统I ...
- docker 1.0.0发布以及一个bug依赖apparmor_parser
6月10号docker 1.0稳定版本发布,找了台ubuntu的机器,装了下 ubuntu version:12.04 docker version:1.0.0 装docker的步骤可以看官方文档:h ...
- iSight集成Adams/View:Adams组件
iSight本身支持特定版本的Adams/View,在Adams中添加isight的插件方法如下: 1.在iSight安装目录下搜索isight.bin文件,将其复制到Adams安装路径下的win32 ...
- C#/.NET Little Wonders: Use Cast() and OfType() to Change Sequence Type(zz)
Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, ...
- require.js 入门学习 (share)
以下内容转自阮一峰老师的网络日志:http://www.ruanyifeng.com/blog/2012/11/require_js.html 更多学习资源: require.js官网:http:// ...