Reflect

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 288    Accepted Submission(s): 174

Problem Description
We send a light from one point on a mirror material circle,it reflects N times and return the original point firstly.Your task is calcuate the number of schemes.

 
Input
First line contains a single integer T(T≤10) which denotes the number of test cases.

For each test case, there is an positive integer N(N≤106).

 
Output
For each case, output the answer.
 
Sample Input
1
4
 
Sample Output
4
 
Source

#include<bits/stdc++.h>
using namespace std;
const int M = 1e6+10 ;
int phi[M] , prime[M] ; int Euler () {
for (int i = 2 ; i < M ; i ++) {
if (!phi[i]) {
phi[i] = i-1 ;
prime[ ++prime[0] ] = i ;
}
for (int j = 1 ; j <= prime[0] && 1ll*i*prime[j] < M ; j ++) {
if (i % prime[j]) phi[i * prime[j]] = phi[i] * (prime[j]-1) ;
else {
phi[i * prime[j] ] = phi[i] * prime[j] ;
break ;
}
}
}
} int main () {
Euler () ;
int T ;
scanf ("%d" , &T) ;
int n ;
while (T --) {
scanf ("%d" , &n) ;
printf ("%d\n" , phi[n+1]) ;
}
return 0 ;
}

虽然说标签上写着欧拉,但在分析出之前,并没有什么用。

一开始我是这么想的,如果当前的点数为n。cnt = 0 ;

那么我枚举 i = 1~n/2,如果n % i == 0 ,那么当前这种情况肯定是不行的(这里i可以认为是你隔了i个点连线),其余情况,我都令cnt++

因为我想如果当前的间隔点数>n/2 , 那么相当于前一半的对称,我最后答案只要cnt*2就ok了。

个人现在仍觉得蛮对的。(但实际上wa了)

但进一步分析:

2θ * n = 2*k*pi ;

θ = k/n * pi ;

所以理论上来说只要k <= n ,都是能回到圆点的。但题目要求要“恰好”

然后我们假设存在三个正整数k,a,b,k=a+b。

那么你很容易证明若 k 与 a 互质 , 则k 必与 b互质;同样的,k 若与 a 不互质,则k 与 b必定不互质。

所以我在枚举 i = 1~n/2的过程中,若枚举到一个数x , n%x == 0 , 那么 n % (n-x) == 0 ,

而且你会发现x , 和n - x就是个对称的过程。

所以其实我在干的过程就是 寻找与n互质的数的个数 。

所以用欧拉函数完全没问题。

Reflect(欧拉函数)的更多相关文章

  1. HDU 5430:Reflect 欧拉函数

    Reflect  Accepts: 72  Submissions: 302  Time Limit: 2000/1000 MS (Java/Others)  Memory Limit: 65536/ ...

  2. hdu 5279 Reflect phi 欧拉函数

    Reflect Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://bestcoder.hdu.edu.cn/contests/contest_chi ...

  3. HDU 5430 Reflect(欧拉函数)

    题目: http://acm.hdu.edu.cn/showproblem.php?pid=5430 从镜面材质的圆上一点发出一道光线反射NNN次后首次回到起点. 问本质不同的发射的方案数. 输入描述 ...

  4. hdu2588 GCD (欧拉函数)

    GCD 题意:输入N,M(2<=N<=1000000000, 1<=M<=N), 设1<=X<=N,求使gcd(X,N)>=M的X的个数.  (文末有题) 知 ...

  5. BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][ ...

  6. BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4436  Solved: 1957[Submit][Status][Discuss ...

  7. COGS2531. [HZOI 2016]函数的美 打表+欧拉函数

    题目:http://cogs.pw/cogs/problem/problem.php?pid=2533 这道题考察打表观察规律. 发现对f的定义实际是递归式的 f(n,k) = f(0,f(n-1,k ...

  8. poj2478 Farey Sequence (欧拉函数)

    Farey Sequence 题意:给定一个数n,求在[1,n]这个范围内两两互质的数的个数.(转化为给定一个数n,比n小且与n互质的数的个数) 知识点: 欧拉函数: 普通求法: int Euler( ...

  9. 51Nod-1136 欧拉函数

    51Nod: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1136 1136 欧拉函数 基准时间限制:1 秒 空间限制: ...

随机推荐

  1. Linux 之 编译器 gcc/g++参数详解

    2016年12月9日16:48:53 ----------------------------- 内容目录: [介绍] gcc and g++分别是gnu的c & c++编译器 gcc/g++ ...

  2. 二项分布和Beta分布

    原文为: 二项分布和Beta分布 二项分布和Beta分布 In [15]: %pylab inline import pylab as pl import numpy as np from scipy ...

  3. HTML5学习总结-08 应用缓存(Application Cache)

    一 应用缓存(Application Cache) 1 应用缓存 HTML5 引入了应用程序缓存,这意味着 web 应用可进行缓存,并可在没有因特网连接时进行访问. 应用程序缓存为应用带来三个优势: ...

  4. 今天接触枚举类型,感觉是C里面应该才有的东西

    遍历枚类型的方法: public static EActChannel getEnumByCode(int code) { for (EActChannel enm : EActChannel.val ...

  5. IP地址、子网掩码、网关、DNS的关系

      什么是IP地址所谓IP地址就是给每个连接在Internet上的主机分配的一个32bit地址.按照TCP/IP协议规定,IP地址用二进制来表示,每个IP地址长32bit,比特换算成字节,就是4个字节 ...

  6. 【原】web移动端常用知识点笔记

    摘要:因为平时搞移动端的比例多一点,做个小小的总结.虽然网上很多这方面的总结,不过还是想自己也总结一下,适合自己的才是最好的.这样也方便以后自己的查阅 viewport模板——通用 <!DOCT ...

  7. layer图层常见属性

    把layer常见图层属性总结了一下^-^欢迎大家讨论~~~~来吧 ,代码属性 #import "CZViewController.h" @interface CZViewContr ...

  8. linux查看java jdk安装路径和设置环境变量

    一:查看类型 windows: set java_home:查看JDK安装路径 java -version:查看JDK版本 linux: whereis java which java (java执行 ...

  9. 9月19日下午JavaScript数组冒泡排列和二分法

    数组 一.冒泡排列 对数组attr = [1,8,6,4,5,3,7,2,9]进行由大到小排列,用冒泡排列的方法排列时,会对数组进行比较互换.如果前一个数字较大,这2个元素排列方式不变,如果后一个元素 ...

  10. 对象Clone

    //================================================= // File Name : Clone_demo //-------------------- ...