“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授。
PDF格式学习笔记下载(Academia.edu)
第4章课程讲义下载(PDF)

Summary

  • Transpose
    Let $[A]$ be a $m\times n$ matrix. Then $[B]$ is the transpose of $[A]$ if $b_{ji} = a_{ij}$ for all $i$ and $j$. That is, the $i$-th row and the $j$-th column element of $[A]$ is the $j$-th row and $i$-th column element of $[B]$. Note that $[B]$ is a $n\times m$ matrix and is denoted by $[B] = [A]^{T}$. For example, $$[A] = \begin{bmatrix}1& 2& 3\\ 4& 5& 6\end{bmatrix}\Rightarrow [A]^{T} = \begin{bmatrix}1& 4\\ 2& 5\\ 3& 6\end{bmatrix}$$
  • Symmetric matrix
    A square matrix $[A]$ with real elements where $a_{ij} = a_{ji}$ for $i = 1, \cdots, n$ and $j = 1, \cdots, n$ is called a symmetric matrix. That is, $[A]$ is a symmetric matrix if $[A] = [A]^{T}$. For example, $$[A] = \begin{bmatrix}1& 2& 3\\ 2& 4& 5\\ 3& 5& 7\end{bmatrix}$$
  • Skew-symmetric matrix
    A $n\times n$ matrix is skew-symmetric if $a_{ij} = -a_{ji}$ for $i = 1, \cdots, n$ and $j = 1, \cdots, n$. That is, $[A]$ is a skew-symmetric matrix if $[A] = -[A]^{T}$. Note that the diagonal elements must be zero in a skew-symmetric matrix. For example, $$[A] = \begin{bmatrix}0& 2& 3\\ -2& 0& 5\\ -3& -5& 0\end{bmatrix}$$
  • Trace of matrix
    The trace of a $n\times n$ matrix $[A]$ is the sum of the diagonal entries of $[A]$, that is, $$\text{tr}[A] = \sum_{i=1}^{n}a_{ii}$$ For example, $$[A] = \begin{bmatrix}1& 2& 3\\ 2& 4& 5\\ 3& 5& 7\end{bmatrix}\Rightarrow \text{tr}[A] = 1 + 4 +7=12$$
  • Determinant
    Let $[A]$ be a $n\times n$ matrix.

    • The minor of entry $a_{ij}$ is denoted by $M_{ij}$ and is defined as the determinant of the $(n-1)\times(n-1)$ sub-matrix of $[A]$, where the sub-matrix is obtained by deleting the $i$-th row and $j$-th column of the matrix $[A]$. The determinant is then given by $$\det(A) = \sum_{j=1}^{n}(-1)^{i+j}a_{ij}M_{ij},\ \text{for any}\ i=1, 2, \cdots, n$$ or $$\det(A) = \sum_{i=1}^{n}(-1)^{i+j}a_{ij}M_{ij},\ \text{for any}\ j=1, 2, \cdots, n$$ For example, $$[A] = \begin{bmatrix}1& 2& 3\\ 2& 4& 5\\ 3& 5& 7\end{bmatrix}$$ $$\Rightarrow \det(A) =(-1)^{1+1}\cdot1\cdot\begin{vmatrix}4& 5 \\ 5& 7\end{vmatrix} + (-1)^{1+2}\cdot2\cdot\begin{vmatrix}2& 5 \\ 3& 7\end{vmatrix} + (-1)^{1+3}\cdot3\cdot\begin{vmatrix}2& 4 \\ 3& 5\end{vmatrix}$$ $$=(4\times7-5\times5) -2\times(2\times7-3\times5) + 3\times(2\times5 - 3\times4) = -1$$ Note that for a $2\times2$ matrix $[A] = \begin{bmatrix}a& b\\ c& d\end{bmatrix}$, $\det(A) = ad-bc$.
    • The number $(-1)^{i+j}M_{ij}$ is called the cofactor of $a_{ij}$ and is denoted by $C_{ij}$. The formula for the determinant can then be written as $$\det(A) = \sum_{j=1}^{n}a_{ij}C_{ij},\ \text{for any}\ i=1, 2, \cdots, n$$ or $$\det(A) = \sum_{i=1}^{n}a_{ij}C_{ij},\ \text{for any}\ j=1, 2, \cdots, n$$
    • If $[A]$ and $[B]$ are square matrices of same size, then $$\det(A\cdot B) = \det(A)\cdot\det(B)$$
    • $\det(A) = 0$ if
      • A row or a column is zero, or
      • A row (column) is proportional to another row (column).
    • If a row (column) is multiplied by $k$ to result in matrix $[B]$, then $$\det(B) = k\cdot\det(A)$$
    • If $[B] = k\cdot[A]$, then $$\det(B)=k^{n}\det(A)$$
    • If $[A]$ is a $n\times n$ upper or lower triangular matrix, then $$\det(A) = \prod_{i=1}^{n}a_{ii}$$
    • If $[B]$ is row-equivalent to $[A]$, then $$\begin{cases} R_i\leftrightarrow R_j: & \det(B) = -\det(A);\\ tR_i: & \det(B) = t\det(A);\\ R_i\rightarrow R_i+tR_j: &\det(B) = \det(A).\end{cases}$$

Selected Problems

1. Let $$[A] = \begin{bmatrix}25& 3& 6\\ 7& 9& 2\end{bmatrix}$$ Find $[A]^{T}$.

Solution:

$$[A]^{T} = \begin{bmatrix}25& 7\\ 3& 9\\ 6& 2\end{bmatrix}$$

2. If $[A]$ and $[B]$ are two $n\times n$ symmetric matrices, show that $[A]+[B]$ is also symmetric.

Solution:

Let $[C]=[A]+[B]$, so we have $$c_{ij} = a_{ij} + b_{ij} = a_{ji} + b_{ji} =c_{ji}$$ that is, $[C]=[C]^{T}$.

3. What is the trace of $$[A] = \begin{bmatrix}7& 2& 3& 4\\ -5& -5& -5& -5\\ 6& 6& 7& 9\\ -5& 2& 3& 10\end{bmatrix}$$

Solution:

$$\text{tr}[A] = 7-5+7+10=19$$

4. Find the determinant of $$[A] = \begin{bmatrix}10& -7& 0\\ -3& 2.099& 6\\ 5& -1& 5\end{bmatrix}$$

Solution:

$$\det(A)=(-1)^{1+1}\times10\times\begin{vmatrix}2.099& 6\\ -1& 5\end{vmatrix} + (-1)^{1+2}\times(-7)\times\begin{vmatrix}-3& 6\\ 5& 5\end{vmatrix}$$ $$=10\times(2.099\times5+1\times6) + 7\times(-15-30) = -150.05$$

5. What is the value of a $n\times n$ matrix $\det(3[A])$?

Solution:

$$\det(3[A]) = 3^n\det(A)$$

6. For a $5\times5$ matrix $[A]$, the first row is interchanged with the fifth row, what is the determinant of the resulting matrix $[B]$?

Solution:

The sign would be changed if interchaged two row (column). Thus $$\det(B) = -\det(A)$$

7. What is the determinant of $$[A] = \begin{bmatrix}0& 1& 0& 0\\ 0& 0& 1& 0\\ 0& 0& 0& 1\\ 1& 0& 0& 0\end{bmatrix}$$

Solution:

$$[A] = \begin{bmatrix}0& 1& 0& 0\\ 0& 0& 1& 0\\ 0& 0& 0& 1\\ 1& 0& 0& 0\end{bmatrix}\Rightarrow R_1\leftrightarrow R_4 \begin{bmatrix}1& 0& 0& 0\\ 0& 0& 1& 0\\ 0& 0& 0& 1\\ 0& 1& 0& 0\end{bmatrix}$$ $$\Rightarrow R_2\leftrightarrow R_3 \begin{bmatrix}1& 0& 0& 0\\ 0& 0& 0& 1\\ 0& 0& 1& 0\\0& 1& 0& 0\end{bmatrix}$$ $$\Rightarrow R_2\leftrightarrow R_4 \begin{bmatrix}1& 0& 0& 0\\0& 1& 0& 0\\ 0& 0& 1& 0\\0& 0& 0& 1\end{bmatrix}=[B]$$ Thus $\det(A) = (-1)^{3}\det(B)=-1$.

8. Find the determinant of $$[A]=\begin{bmatrix}0& 0& 0\\ 2& 3& 5\\ 6& 9& 2\end{bmatrix}$$

Solution:

$\det(A)=0$ since the first row is zero.

9. Find the determinant of $$[A]=\begin{bmatrix}0& 0& 2& 3\\ 0& 2& 3& 5\\ 6& 7& 2& 3\\ 6.6& 7.7& 2.2& 3.3\end{bmatrix}$$

Solution:

Since $R_4 = 1.1R_3$, so $\det(A) = 0$.

10. Find the determinant of $$[A]=\begin{bmatrix}5& 0& 0& 0\\ 0& 3& 0& 0\\ 2& 5& 6& 0\\ 1& 2& 3& 9\end{bmatrix}$$

Solution:

This is a lower triangular matrix and hence $$\det(A) = 5\times3\times6\times9=810$$

11. Given the matrix $$[A]=\begin{bmatrix}125& 25& 5& 1\\ 512& 64& 8& 1\\ 1157& 89& 13& 1\\ 8& 4& 2& 1\end{bmatrix}$$ and $\det(A) = -32400$. Find the determinant of $$[A_1]=\begin{bmatrix}125& 25& 5& 1\\ 512& 64& 8& 1\\ 1141& 81& 9& -1\\ 8& 4& 2& 1\end{bmatrix};$$ $$[A_2]=\begin{bmatrix}125& 25& 1& 5\\ 512& 64& 1& 8\\ 1157& 89& 1& 13\\ 8& 4& 1& 2\end{bmatrix};$$ $$[A_3] = \begin{bmatrix} 125& 25& 5& 1\\ 1157& 89& 13& 1\\ 512& 64& 8& 1\\8& 4& 2& 1\end{bmatrix};$$ $$[A_4] = \begin{bmatrix} 125& 25& 5& 1\\ 1157& 89& 13& 1\\ 8& 4& 2& 1\\ 512& 64& 8& 1\end{bmatrix};$$ $$[A_5] = \begin{bmatrix} 125& 25& 5& 1\\ 512& 64& 8& 1\\ 1157& 89& 13& 1\\ 16& 8& 4& 2 \end{bmatrix}.$$

Solution:

$$[A]=\begin{bmatrix}125& 25& 5& 1\\ 512& 64& 8& 1\\ 1157& 89& 13& 1\\ 8& 4& 2& 1\end{bmatrix}\Rightarrow R_3-2R_4 \begin{bmatrix}125& 25& 5& 1\\ 512& 64& 8& 1\\ 1141& 81& 9& -1\\ 8& 4& 2& 1\end{bmatrix}=[A_1]$$ Thus $\det(A_1) = \det(A) =-32400$. $$[A]=\begin{bmatrix}125& 25& 5& 1\\ 512& 64& 8& 1\\ 1157& 89& 13& 1\\ 8& 4& 2& 1\end{bmatrix}\Rightarrow C_3\leftrightarrow C_4 \begin{bmatrix}125& 25& 1& 5\\ 512& 64& 1& 8\\ 1157& 89& 1& 13\\ 8& 4& 1& 2\end{bmatrix} = [A_2]$$ Thus $\det(A_2)=-\det(A)=32400$. $$[A]=\begin{bmatrix}125& 25& 5& 1\\ 512& 64& 8& 1\\ 1157& 89& 13& 1\\ 8& 4& 2& 1\end{bmatrix}\Rightarrow R_2\leftrightarrow R_3\begin{bmatrix} 125& 25& 5& 1\\ 1157& 89& 13& 1\\ 512& 64& 8& 1\\8& 4& 2& 1\end{bmatrix}= [A_3]$$ Thus $\det(A_3) = -\det(A) = 32400$. $$[A]=\begin{bmatrix}125& 25& 5& 1\\ 512& 64& 8& 1\\ 1157& 89& 13& 1\\ 8& 4& 2& 1\end{bmatrix}\Rightarrow \begin{cases} R_2\leftrightarrow R_3\\ R'_3\leftrightarrow R_4\end{cases} \begin{bmatrix} 125& 25& 5& 1\\ 1157& 89& 13& 1\\ 8& 4& 2& 1\\ 512& 64& 8& 1\end{bmatrix} = [A_4]$$ Thus $\det(A_4) = (-1)^2\det(A) = -32400$. $$[A]=\begin{bmatrix}125& 25& 5& 1\\ 512& 64& 8& 1\\ 1157& 89& 13& 1\\ 8& 4& 2& 1\end{bmatrix} \Rightarrow 2R_4\begin{bmatrix} 125& 25& 5& 1\\ 512& 64& 8& 1\\ 1157& 89& 13& 1\\ 16& 8& 4& 2 \end{bmatrix} = [A_5]$$ Thus $\det(A_5) = 2\det(A) = -64800$.

12. Find the determinant of $$[A] = \begin{bmatrix}25& 5& 1\\ 64& 8& 1\\ 144& 12& 5\end{bmatrix}$$

Solution:

$$\det(A) = (-1)^{1+3}a_{13}M_{13}+(-1)^{2+3}a_{23}M_{23} + (-1)^{3+3}a_{33}M_{33}$$ $$ = \begin{vmatrix}64& 8\\ 144& 12\end{vmatrix} - \begin{vmatrix}25& 5\\ 144& 12\end{vmatrix} + 5\times \begin{vmatrix}25& 5\\ 64& 8\end{vmatrix} = -564$$

13. Show that if $[A][B]=[I]$, where $[A]$, $[B]$ and $[I]$ are matrices of $n\times n$ size and $[I]$ is an identity matrix, then $\det(A)\neq0$ and $\det(B)\neq0$.

Solution:
$$\det(A)\det(B)=\det(AB) =\det(I) = 1$$ $$\Rightarrow \det(A)\neq0,\ \det(B)\neq0.$$

14. If the determinant of a $4\times4$ matrix $[A]$ is given as 20, then what is the determinant of $5[A]$?

Solution:

$$\det(k[A])=k^n\det(A)$$ $$\Rightarrow \det(5[A]) = 5^4\det(A) = 625\times20=12500$$

15. If the matrix product $[A][B][B]$ is defined, what is $([A][B][C])^{T}$?

Solution:

$$([A][B])^{T}=[B]^{T}[A]^{T}$$
$$\Rightarrow ([A][B][C])^{T}=[C]^{T}([A][B])^{T}=[C]^{T}[B]^{T}[A]^{T}$$

16. The determinant of the matrix $$[A] = \begin{bmatrix}25& 5& 1\\ 0& 3& 8\\ 0& 9& a\end{bmatrix}$$ is 50. What is the value of $a$?

Solution:

$$\det(A) = 25\times\begin{vmatrix}3& 8\\ 9& a\end{vmatrix} = 25\times(3a-72)=50$$ $$\Rightarrow a={74\over3}$$

17. $[A]$ is a $5\times 5$ matrix and a matrix $[B]$ is obtained by the row operations of replacing Row1 with Row3, and then Row3 is replaced by a linear combination of $2\times$Row3$+4\times$Row2. If $\det(A)=17$, then what is the value of $\det(B)$?

Solution:

The process is $$[A]\Rightarrow R_1\leftrightarrow R_3 \Rightarrow 2R_3\Rightarrow R_3+4R_2\Rightarrow [B]$$ Thus $$\det(B) = (-1)\times2\cdot\det(A) = -34$$

A.Kaw矩阵代数初步学习笔记 4. Unary Matrix Operations的更多相关文章

  1. A.Kaw矩阵代数初步学习笔记 3. Binary Matrix Operations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  2. A.Kaw矩阵代数初步学习笔记 10. Eigenvalues and Eigenvectors

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  3. A.Kaw矩阵代数初步学习笔记 9. Adequacy of Solutions

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  4. A.Kaw矩阵代数初步学习笔记 8. Gauss-Seidel Method

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  5. A.Kaw矩阵代数初步学习笔记 7. LU Decomposition

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  6. A.Kaw矩阵代数初步学习笔记 6. Gaussian Elimination

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  7. A.Kaw矩阵代数初步学习笔记 5. System of Equations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  8. A.Kaw矩阵代数初步学习笔记 2. Vectors

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  9. A.Kaw矩阵代数初步学习笔记 1. Introduction

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

随机推荐

  1. leetcode 315. Count of Smaller Numbers After Self 两种思路(欢迎探讨更优解法)

    说来惭愧,已经四个月没有切 leetcode 上的题目了. 虽然工作中很少(几乎)没有用到什么高级算法,数据结构,但是我一直坚信 "任何语言都会过时,只有数据结构和算法才能永恒". ...

  2. js的this什么时候会出现报错

    var aa ={ name:"boy", age:, like: function(){ console.log(this.name); } } //aa.like();//这样 ...

  3. swfupload提示“错误302”的解决方法

    1.关于图片上传控件,flash控件的显示效果要好一些,本人使用swfupload 2.swfupload上传控件使用方式详见文档 http://www.leeon.me/upload/other/s ...

  4. crontab 定时任务

    1 linux 系统需要安装crontab ;yum install vixie-cron crontabs 2 编写shell 脚本, save_dir=/var/local/mysqlbak/Ne ...

  5. golang: 把sql结果集以json格式输出

    func getJSON(sqlString string) (string, error) { stmt, err := db.Prepare(sqlString) if err != nil { ...

  6. 【Alpha版本】冲刺阶段——Day 9

    我说的都队 031402304 陈燊 031402342 许玲玲 031402337 胡心颖 03140241 王婷婷 031402203 陈齐民 031402209 黄伟炜 031402233 郑扬 ...

  7. 获取客户端ip地址

    新浪的IP地址查询接口:http://int.dpool.sina.com.cn/iplookup/iplookup.php?format=js 新浪多地域测试方法:http://int.dpool. ...

  8. 【日常笔记】java spring 注解读取文件

    获取后缀文件 <!-- 注解读取properties文件开始 @Value("#{configProperties['userPageSize']}")private Str ...

  9. SpringMVC 参数传递

    使用@RequestParam 注解获取GET请求或POST请求提交的参数: 获取Cookie的值:使用@CookieValue : 根据不同的Web请求方法,映射到不同的处理方法:使用登陆页面作示例 ...

  10. Spring mvc-异常javax.servlet.ServletException: Could not resolve view with name 'xxx' in servlet with name 'spring'

    最近使用spring mvc开发项目,遇到一个问题: javax.servlet.ServletException: Could not resolve view with name 'ok' in ...