“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授。
PDF格式学习笔记下载(Academia.edu)
第4章课程讲义下载(PDF)

Summary

  • Transpose
    Let $[A]$ be a $m\times n$ matrix. Then $[B]$ is the transpose of $[A]$ if $b_{ji} = a_{ij}$ for all $i$ and $j$. That is, the $i$-th row and the $j$-th column element of $[A]$ is the $j$-th row and $i$-th column element of $[B]$. Note that $[B]$ is a $n\times m$ matrix and is denoted by $[B] = [A]^{T}$. For example, $$[A] = \begin{bmatrix}1& 2& 3\\ 4& 5& 6\end{bmatrix}\Rightarrow [A]^{T} = \begin{bmatrix}1& 4\\ 2& 5\\ 3& 6\end{bmatrix}$$
  • Symmetric matrix
    A square matrix $[A]$ with real elements where $a_{ij} = a_{ji}$ for $i = 1, \cdots, n$ and $j = 1, \cdots, n$ is called a symmetric matrix. That is, $[A]$ is a symmetric matrix if $[A] = [A]^{T}$. For example, $$[A] = \begin{bmatrix}1& 2& 3\\ 2& 4& 5\\ 3& 5& 7\end{bmatrix}$$
  • Skew-symmetric matrix
    A $n\times n$ matrix is skew-symmetric if $a_{ij} = -a_{ji}$ for $i = 1, \cdots, n$ and $j = 1, \cdots, n$. That is, $[A]$ is a skew-symmetric matrix if $[A] = -[A]^{T}$. Note that the diagonal elements must be zero in a skew-symmetric matrix. For example, $$[A] = \begin{bmatrix}0& 2& 3\\ -2& 0& 5\\ -3& -5& 0\end{bmatrix}$$
  • Trace of matrix
    The trace of a $n\times n$ matrix $[A]$ is the sum of the diagonal entries of $[A]$, that is, $$\text{tr}[A] = \sum_{i=1}^{n}a_{ii}$$ For example, $$[A] = \begin{bmatrix}1& 2& 3\\ 2& 4& 5\\ 3& 5& 7\end{bmatrix}\Rightarrow \text{tr}[A] = 1 + 4 +7=12$$
  • Determinant
    Let $[A]$ be a $n\times n$ matrix.

    • The minor of entry $a_{ij}$ is denoted by $M_{ij}$ and is defined as the determinant of the $(n-1)\times(n-1)$ sub-matrix of $[A]$, where the sub-matrix is obtained by deleting the $i$-th row and $j$-th column of the matrix $[A]$. The determinant is then given by $$\det(A) = \sum_{j=1}^{n}(-1)^{i+j}a_{ij}M_{ij},\ \text{for any}\ i=1, 2, \cdots, n$$ or $$\det(A) = \sum_{i=1}^{n}(-1)^{i+j}a_{ij}M_{ij},\ \text{for any}\ j=1, 2, \cdots, n$$ For example, $$[A] = \begin{bmatrix}1& 2& 3\\ 2& 4& 5\\ 3& 5& 7\end{bmatrix}$$ $$\Rightarrow \det(A) =(-1)^{1+1}\cdot1\cdot\begin{vmatrix}4& 5 \\ 5& 7\end{vmatrix} + (-1)^{1+2}\cdot2\cdot\begin{vmatrix}2& 5 \\ 3& 7\end{vmatrix} + (-1)^{1+3}\cdot3\cdot\begin{vmatrix}2& 4 \\ 3& 5\end{vmatrix}$$ $$=(4\times7-5\times5) -2\times(2\times7-3\times5) + 3\times(2\times5 - 3\times4) = -1$$ Note that for a $2\times2$ matrix $[A] = \begin{bmatrix}a& b\\ c& d\end{bmatrix}$, $\det(A) = ad-bc$.
    • The number $(-1)^{i+j}M_{ij}$ is called the cofactor of $a_{ij}$ and is denoted by $C_{ij}$. The formula for the determinant can then be written as $$\det(A) = \sum_{j=1}^{n}a_{ij}C_{ij},\ \text{for any}\ i=1, 2, \cdots, n$$ or $$\det(A) = \sum_{i=1}^{n}a_{ij}C_{ij},\ \text{for any}\ j=1, 2, \cdots, n$$
    • If $[A]$ and $[B]$ are square matrices of same size, then $$\det(A\cdot B) = \det(A)\cdot\det(B)$$
    • $\det(A) = 0$ if
      • A row or a column is zero, or
      • A row (column) is proportional to another row (column).
    • If a row (column) is multiplied by $k$ to result in matrix $[B]$, then $$\det(B) = k\cdot\det(A)$$
    • If $[B] = k\cdot[A]$, then $$\det(B)=k^{n}\det(A)$$
    • If $[A]$ is a $n\times n$ upper or lower triangular matrix, then $$\det(A) = \prod_{i=1}^{n}a_{ii}$$
    • If $[B]$ is row-equivalent to $[A]$, then $$\begin{cases} R_i\leftrightarrow R_j: & \det(B) = -\det(A);\\ tR_i: & \det(B) = t\det(A);\\ R_i\rightarrow R_i+tR_j: &\det(B) = \det(A).\end{cases}$$

Selected Problems

1. Let $$[A] = \begin{bmatrix}25& 3& 6\\ 7& 9& 2\end{bmatrix}$$ Find $[A]^{T}$.

Solution:

$$[A]^{T} = \begin{bmatrix}25& 7\\ 3& 9\\ 6& 2\end{bmatrix}$$

2. If $[A]$ and $[B]$ are two $n\times n$ symmetric matrices, show that $[A]+[B]$ is also symmetric.

Solution:

Let $[C]=[A]+[B]$, so we have $$c_{ij} = a_{ij} + b_{ij} = a_{ji} + b_{ji} =c_{ji}$$ that is, $[C]=[C]^{T}$.

3. What is the trace of $$[A] = \begin{bmatrix}7& 2& 3& 4\\ -5& -5& -5& -5\\ 6& 6& 7& 9\\ -5& 2& 3& 10\end{bmatrix}$$

Solution:

$$\text{tr}[A] = 7-5+7+10=19$$

4. Find the determinant of $$[A] = \begin{bmatrix}10& -7& 0\\ -3& 2.099& 6\\ 5& -1& 5\end{bmatrix}$$

Solution:

$$\det(A)=(-1)^{1+1}\times10\times\begin{vmatrix}2.099& 6\\ -1& 5\end{vmatrix} + (-1)^{1+2}\times(-7)\times\begin{vmatrix}-3& 6\\ 5& 5\end{vmatrix}$$ $$=10\times(2.099\times5+1\times6) + 7\times(-15-30) = -150.05$$

5. What is the value of a $n\times n$ matrix $\det(3[A])$?

Solution:

$$\det(3[A]) = 3^n\det(A)$$

6. For a $5\times5$ matrix $[A]$, the first row is interchanged with the fifth row, what is the determinant of the resulting matrix $[B]$?

Solution:

The sign would be changed if interchaged two row (column). Thus $$\det(B) = -\det(A)$$

7. What is the determinant of $$[A] = \begin{bmatrix}0& 1& 0& 0\\ 0& 0& 1& 0\\ 0& 0& 0& 1\\ 1& 0& 0& 0\end{bmatrix}$$

Solution:

$$[A] = \begin{bmatrix}0& 1& 0& 0\\ 0& 0& 1& 0\\ 0& 0& 0& 1\\ 1& 0& 0& 0\end{bmatrix}\Rightarrow R_1\leftrightarrow R_4 \begin{bmatrix}1& 0& 0& 0\\ 0& 0& 1& 0\\ 0& 0& 0& 1\\ 0& 1& 0& 0\end{bmatrix}$$ $$\Rightarrow R_2\leftrightarrow R_3 \begin{bmatrix}1& 0& 0& 0\\ 0& 0& 0& 1\\ 0& 0& 1& 0\\0& 1& 0& 0\end{bmatrix}$$ $$\Rightarrow R_2\leftrightarrow R_4 \begin{bmatrix}1& 0& 0& 0\\0& 1& 0& 0\\ 0& 0& 1& 0\\0& 0& 0& 1\end{bmatrix}=[B]$$ Thus $\det(A) = (-1)^{3}\det(B)=-1$.

8. Find the determinant of $$[A]=\begin{bmatrix}0& 0& 0\\ 2& 3& 5\\ 6& 9& 2\end{bmatrix}$$

Solution:

$\det(A)=0$ since the first row is zero.

9. Find the determinant of $$[A]=\begin{bmatrix}0& 0& 2& 3\\ 0& 2& 3& 5\\ 6& 7& 2& 3\\ 6.6& 7.7& 2.2& 3.3\end{bmatrix}$$

Solution:

Since $R_4 = 1.1R_3$, so $\det(A) = 0$.

10. Find the determinant of $$[A]=\begin{bmatrix}5& 0& 0& 0\\ 0& 3& 0& 0\\ 2& 5& 6& 0\\ 1& 2& 3& 9\end{bmatrix}$$

Solution:

This is a lower triangular matrix and hence $$\det(A) = 5\times3\times6\times9=810$$

11. Given the matrix $$[A]=\begin{bmatrix}125& 25& 5& 1\\ 512& 64& 8& 1\\ 1157& 89& 13& 1\\ 8& 4& 2& 1\end{bmatrix}$$ and $\det(A) = -32400$. Find the determinant of $$[A_1]=\begin{bmatrix}125& 25& 5& 1\\ 512& 64& 8& 1\\ 1141& 81& 9& -1\\ 8& 4& 2& 1\end{bmatrix};$$ $$[A_2]=\begin{bmatrix}125& 25& 1& 5\\ 512& 64& 1& 8\\ 1157& 89& 1& 13\\ 8& 4& 1& 2\end{bmatrix};$$ $$[A_3] = \begin{bmatrix} 125& 25& 5& 1\\ 1157& 89& 13& 1\\ 512& 64& 8& 1\\8& 4& 2& 1\end{bmatrix};$$ $$[A_4] = \begin{bmatrix} 125& 25& 5& 1\\ 1157& 89& 13& 1\\ 8& 4& 2& 1\\ 512& 64& 8& 1\end{bmatrix};$$ $$[A_5] = \begin{bmatrix} 125& 25& 5& 1\\ 512& 64& 8& 1\\ 1157& 89& 13& 1\\ 16& 8& 4& 2 \end{bmatrix}.$$

Solution:

$$[A]=\begin{bmatrix}125& 25& 5& 1\\ 512& 64& 8& 1\\ 1157& 89& 13& 1\\ 8& 4& 2& 1\end{bmatrix}\Rightarrow R_3-2R_4 \begin{bmatrix}125& 25& 5& 1\\ 512& 64& 8& 1\\ 1141& 81& 9& -1\\ 8& 4& 2& 1\end{bmatrix}=[A_1]$$ Thus $\det(A_1) = \det(A) =-32400$. $$[A]=\begin{bmatrix}125& 25& 5& 1\\ 512& 64& 8& 1\\ 1157& 89& 13& 1\\ 8& 4& 2& 1\end{bmatrix}\Rightarrow C_3\leftrightarrow C_4 \begin{bmatrix}125& 25& 1& 5\\ 512& 64& 1& 8\\ 1157& 89& 1& 13\\ 8& 4& 1& 2\end{bmatrix} = [A_2]$$ Thus $\det(A_2)=-\det(A)=32400$. $$[A]=\begin{bmatrix}125& 25& 5& 1\\ 512& 64& 8& 1\\ 1157& 89& 13& 1\\ 8& 4& 2& 1\end{bmatrix}\Rightarrow R_2\leftrightarrow R_3\begin{bmatrix} 125& 25& 5& 1\\ 1157& 89& 13& 1\\ 512& 64& 8& 1\\8& 4& 2& 1\end{bmatrix}= [A_3]$$ Thus $\det(A_3) = -\det(A) = 32400$. $$[A]=\begin{bmatrix}125& 25& 5& 1\\ 512& 64& 8& 1\\ 1157& 89& 13& 1\\ 8& 4& 2& 1\end{bmatrix}\Rightarrow \begin{cases} R_2\leftrightarrow R_3\\ R'_3\leftrightarrow R_4\end{cases} \begin{bmatrix} 125& 25& 5& 1\\ 1157& 89& 13& 1\\ 8& 4& 2& 1\\ 512& 64& 8& 1\end{bmatrix} = [A_4]$$ Thus $\det(A_4) = (-1)^2\det(A) = -32400$. $$[A]=\begin{bmatrix}125& 25& 5& 1\\ 512& 64& 8& 1\\ 1157& 89& 13& 1\\ 8& 4& 2& 1\end{bmatrix} \Rightarrow 2R_4\begin{bmatrix} 125& 25& 5& 1\\ 512& 64& 8& 1\\ 1157& 89& 13& 1\\ 16& 8& 4& 2 \end{bmatrix} = [A_5]$$ Thus $\det(A_5) = 2\det(A) = -64800$.

12. Find the determinant of $$[A] = \begin{bmatrix}25& 5& 1\\ 64& 8& 1\\ 144& 12& 5\end{bmatrix}$$

Solution:

$$\det(A) = (-1)^{1+3}a_{13}M_{13}+(-1)^{2+3}a_{23}M_{23} + (-1)^{3+3}a_{33}M_{33}$$ $$ = \begin{vmatrix}64& 8\\ 144& 12\end{vmatrix} - \begin{vmatrix}25& 5\\ 144& 12\end{vmatrix} + 5\times \begin{vmatrix}25& 5\\ 64& 8\end{vmatrix} = -564$$

13. Show that if $[A][B]=[I]$, where $[A]$, $[B]$ and $[I]$ are matrices of $n\times n$ size and $[I]$ is an identity matrix, then $\det(A)\neq0$ and $\det(B)\neq0$.

Solution:
$$\det(A)\det(B)=\det(AB) =\det(I) = 1$$ $$\Rightarrow \det(A)\neq0,\ \det(B)\neq0.$$

14. If the determinant of a $4\times4$ matrix $[A]$ is given as 20, then what is the determinant of $5[A]$?

Solution:

$$\det(k[A])=k^n\det(A)$$ $$\Rightarrow \det(5[A]) = 5^4\det(A) = 625\times20=12500$$

15. If the matrix product $[A][B][B]$ is defined, what is $([A][B][C])^{T}$?

Solution:

$$([A][B])^{T}=[B]^{T}[A]^{T}$$
$$\Rightarrow ([A][B][C])^{T}=[C]^{T}([A][B])^{T}=[C]^{T}[B]^{T}[A]^{T}$$

16. The determinant of the matrix $$[A] = \begin{bmatrix}25& 5& 1\\ 0& 3& 8\\ 0& 9& a\end{bmatrix}$$ is 50. What is the value of $a$?

Solution:

$$\det(A) = 25\times\begin{vmatrix}3& 8\\ 9& a\end{vmatrix} = 25\times(3a-72)=50$$ $$\Rightarrow a={74\over3}$$

17. $[A]$ is a $5\times 5$ matrix and a matrix $[B]$ is obtained by the row operations of replacing Row1 with Row3, and then Row3 is replaced by a linear combination of $2\times$Row3$+4\times$Row2. If $\det(A)=17$, then what is the value of $\det(B)$?

Solution:

The process is $$[A]\Rightarrow R_1\leftrightarrow R_3 \Rightarrow 2R_3\Rightarrow R_3+4R_2\Rightarrow [B]$$ Thus $$\det(B) = (-1)\times2\cdot\det(A) = -34$$

A.Kaw矩阵代数初步学习笔记 4. Unary Matrix Operations的更多相关文章

  1. A.Kaw矩阵代数初步学习笔记 3. Binary Matrix Operations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  2. A.Kaw矩阵代数初步学习笔记 10. Eigenvalues and Eigenvectors

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  3. A.Kaw矩阵代数初步学习笔记 9. Adequacy of Solutions

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  4. A.Kaw矩阵代数初步学习笔记 8. Gauss-Seidel Method

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  5. A.Kaw矩阵代数初步学习笔记 7. LU Decomposition

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  6. A.Kaw矩阵代数初步学习笔记 6. Gaussian Elimination

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  7. A.Kaw矩阵代数初步学习笔记 5. System of Equations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  8. A.Kaw矩阵代数初步学习笔记 2. Vectors

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  9. A.Kaw矩阵代数初步学习笔记 1. Introduction

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

随机推荐

  1. 【转】如何拿到半数面试公司Offer——我的Python求职之路

    原文地址 从八月底开始找工作,短短的一星期多一些,面试了9家公司,拿到5份Offer,可能是因为我所面试的公司都是些创业性的公司吧,不过还是感触良多,因为学习Python的时间还很短,没想到还算比较容 ...

  2. 如何用 Nodejs 分析一个简单页面

    本文目的 在浏览器地址栏中输入 localhost:3000,在页面显示 博客园首页 的 20 篇文章标题. 过程分析 首先需要端口的监听,这就需要引入 Node 中最重要的模块之一 express. ...

  3. C#发展历程以及C#6.0新特性

    一.C#发展历程 下图是自己整理列出了C#每次重要更新的时间及增加的新特性,对于了解C#这些年的发展历程,对C#的认识更加全面,是有帮助的. 二.C#6.0新特性 1.字符串插值 (String In ...

  4. 学习Python的三种境界

    前言 王国维在<人间词话>中将读书分为了三种境界:"古今之成大事业.大学问者,必经过三种之境界:'昨夜西风凋碧树,独上高楼,望尽天涯路'.此第一境也.'衣带渐宽终不悔,为伊消得人 ...

  5. .net程序员转行做手游开发经历(四)

    今天是大年初二,在这里先给大家拜个年,祝大家在新的一年里能事事顺心. 年前的时候更新了一版,先发了内测,没有想到过年这几天,有的小伙伴们还在玩,还给我们提了很多建议和意见,让我们觉得非常温暖,给我们很 ...

  6. 我做PHP,但是我要批判下整天唱衰.NET的淫

    笔者每天都能看到月经贴-".NET已死"!!! 笔者之前一直在CSDN上面写博客,泡论坛,但是有约莫一年来着了发现CSDN上面的博客都没啥更新,CSDN首页推荐的一些文章也没啥新意 ...

  7. Tensorflow学习笔记4:分布式Tensorflow

    简介 Tensorflow API提供了Cluster.Server以及Supervisor来支持模型的分布式训练. 关于Tensorflow的分布式训练介绍可以参考Distributed Tenso ...

  8. Linq连接查询之左连接、右连接、内连接、全连接、交叉连接、Union合并、Concat连接、Intersect相交、Except与非查询

    内连接查询 内连接与SqL中inner join一样,即找出两个序列的交集 Model1Container model = new Model1Container(); //内连接 var query ...

  9. 使用webpack搭建vue开发环境

    最近几天项目上使用了vue.js作为一个主要的开发框架,并且为了发布的方便搭配了webpack一起使用.CSS框架使用的是vue-strap(vue 对bootstrap控件做了封装)这篇文章主要总结 ...

  10. js 基础(一)

    <!--最近需要用到js相关的知识 就把在W3cSchool 下学到的东西做个笔记,方便以后再看 --><!DOCTYPE html> <html> <hea ...