A.Kaw矩阵代数初步学习笔记 4. Unary Matrix Operations
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授。
PDF格式学习笔记下载(Academia.edu)
第4章课程讲义下载(PDF)
Summary
- Transpose
Let $[A]$ be a $m\times n$ matrix. Then $[B]$ is the transpose of $[A]$ if $b_{ji} = a_{ij}$ for all $i$ and $j$. That is, the $i$-th row and the $j$-th column element of $[A]$ is the $j$-th row and $i$-th column element of $[B]$. Note that $[B]$ is a $n\times m$ matrix and is denoted by $[B] = [A]^{T}$. For example, $$[A] = \begin{bmatrix}1& 2& 3\\ 4& 5& 6\end{bmatrix}\Rightarrow [A]^{T} = \begin{bmatrix}1& 4\\ 2& 5\\ 3& 6\end{bmatrix}$$ - Symmetric matrix
A square matrix $[A]$ with real elements where $a_{ij} = a_{ji}$ for $i = 1, \cdots, n$ and $j = 1, \cdots, n$ is called a symmetric matrix. That is, $[A]$ is a symmetric matrix if $[A] = [A]^{T}$. For example, $$[A] = \begin{bmatrix}1& 2& 3\\ 2& 4& 5\\ 3& 5& 7\end{bmatrix}$$ - Skew-symmetric matrix
A $n\times n$ matrix is skew-symmetric if $a_{ij} = -a_{ji}$ for $i = 1, \cdots, n$ and $j = 1, \cdots, n$. That is, $[A]$ is a skew-symmetric matrix if $[A] = -[A]^{T}$. Note that the diagonal elements must be zero in a skew-symmetric matrix. For example, $$[A] = \begin{bmatrix}0& 2& 3\\ -2& 0& 5\\ -3& -5& 0\end{bmatrix}$$ - Trace of matrix
The trace of a $n\times n$ matrix $[A]$ is the sum of the diagonal entries of $[A]$, that is, $$\text{tr}[A] = \sum_{i=1}^{n}a_{ii}$$ For example, $$[A] = \begin{bmatrix}1& 2& 3\\ 2& 4& 5\\ 3& 5& 7\end{bmatrix}\Rightarrow \text{tr}[A] = 1 + 4 +7=12$$ - Determinant
Let $[A]$ be a $n\times n$ matrix.- The minor of entry $a_{ij}$ is denoted by $M_{ij}$ and is defined as the determinant of the $(n-1)\times(n-1)$ sub-matrix of $[A]$, where the sub-matrix is obtained by deleting the $i$-th row and $j$-th column of the matrix $[A]$. The determinant is then given by $$\det(A) = \sum_{j=1}^{n}(-1)^{i+j}a_{ij}M_{ij},\ \text{for any}\ i=1, 2, \cdots, n$$ or $$\det(A) = \sum_{i=1}^{n}(-1)^{i+j}a_{ij}M_{ij},\ \text{for any}\ j=1, 2, \cdots, n$$ For example, $$[A] = \begin{bmatrix}1& 2& 3\\ 2& 4& 5\\ 3& 5& 7\end{bmatrix}$$ $$\Rightarrow \det(A) =(-1)^{1+1}\cdot1\cdot\begin{vmatrix}4& 5 \\ 5& 7\end{vmatrix} + (-1)^{1+2}\cdot2\cdot\begin{vmatrix}2& 5 \\ 3& 7\end{vmatrix} + (-1)^{1+3}\cdot3\cdot\begin{vmatrix}2& 4 \\ 3& 5\end{vmatrix}$$ $$=(4\times7-5\times5) -2\times(2\times7-3\times5) + 3\times(2\times5 - 3\times4) = -1$$ Note that for a $2\times2$ matrix $[A] = \begin{bmatrix}a& b\\ c& d\end{bmatrix}$, $\det(A) = ad-bc$.
- The number $(-1)^{i+j}M_{ij}$ is called the cofactor of $a_{ij}$ and is denoted by $C_{ij}$. The formula for the determinant can then be written as $$\det(A) = \sum_{j=1}^{n}a_{ij}C_{ij},\ \text{for any}\ i=1, 2, \cdots, n$$ or $$\det(A) = \sum_{i=1}^{n}a_{ij}C_{ij},\ \text{for any}\ j=1, 2, \cdots, n$$
- If $[A]$ and $[B]$ are square matrices of same size, then $$\det(A\cdot B) = \det(A)\cdot\det(B)$$
- $\det(A) = 0$ if
- A row or a column is zero, or
- A row (column) is proportional to another row (column).
- If a row (column) is multiplied by $k$ to result in matrix $[B]$, then $$\det(B) = k\cdot\det(A)$$
- If $[B] = k\cdot[A]$, then $$\det(B)=k^{n}\det(A)$$
- If $[A]$ is a $n\times n$ upper or lower triangular matrix, then $$\det(A) = \prod_{i=1}^{n}a_{ii}$$
- If $[B]$ is row-equivalent to $[A]$, then $$\begin{cases} R_i\leftrightarrow R_j: & \det(B) = -\det(A);\\ tR_i: & \det(B) = t\det(A);\\ R_i\rightarrow R_i+tR_j: &\det(B) = \det(A).\end{cases}$$
Selected Problems
1. Let $$[A] = \begin{bmatrix}25& 3& 6\\ 7& 9& 2\end{bmatrix}$$ Find $[A]^{T}$.
Solution:
$$[A]^{T} = \begin{bmatrix}25& 7\\ 3& 9\\ 6& 2\end{bmatrix}$$
2. If $[A]$ and $[B]$ are two $n\times n$ symmetric matrices, show that $[A]+[B]$ is also symmetric.
Solution:
Let $[C]=[A]+[B]$, so we have $$c_{ij} = a_{ij} + b_{ij} = a_{ji} + b_{ji} =c_{ji}$$ that is, $[C]=[C]^{T}$.
3. What is the trace of $$[A] = \begin{bmatrix}7& 2& 3& 4\\ -5& -5& -5& -5\\ 6& 6& 7& 9\\ -5& 2& 3& 10\end{bmatrix}$$
Solution:
$$\text{tr}[A] = 7-5+7+10=19$$
4. Find the determinant of $$[A] = \begin{bmatrix}10& -7& 0\\ -3& 2.099& 6\\ 5& -1& 5\end{bmatrix}$$
Solution:
$$\det(A)=(-1)^{1+1}\times10\times\begin{vmatrix}2.099& 6\\ -1& 5\end{vmatrix} + (-1)^{1+2}\times(-7)\times\begin{vmatrix}-3& 6\\ 5& 5\end{vmatrix}$$ $$=10\times(2.099\times5+1\times6) + 7\times(-15-30) = -150.05$$
5. What is the value of a $n\times n$ matrix $\det(3[A])$?
Solution:
$$\det(3[A]) = 3^n\det(A)$$
6. For a $5\times5$ matrix $[A]$, the first row is interchanged with the fifth row, what is the determinant of the resulting matrix $[B]$?
Solution:
The sign would be changed if interchaged two row (column). Thus $$\det(B) = -\det(A)$$
7. What is the determinant of $$[A] = \begin{bmatrix}0& 1& 0& 0\\ 0& 0& 1& 0\\ 0& 0& 0& 1\\ 1& 0& 0& 0\end{bmatrix}$$
Solution:
$$[A] = \begin{bmatrix}0& 1& 0& 0\\ 0& 0& 1& 0\\ 0& 0& 0& 1\\ 1& 0& 0& 0\end{bmatrix}\Rightarrow R_1\leftrightarrow R_4 \begin{bmatrix}1& 0& 0& 0\\ 0& 0& 1& 0\\ 0& 0& 0& 1\\ 0& 1& 0& 0\end{bmatrix}$$ $$\Rightarrow R_2\leftrightarrow R_3 \begin{bmatrix}1& 0& 0& 0\\ 0& 0& 0& 1\\ 0& 0& 1& 0\\0& 1& 0& 0\end{bmatrix}$$ $$\Rightarrow R_2\leftrightarrow R_4 \begin{bmatrix}1& 0& 0& 0\\0& 1& 0& 0\\ 0& 0& 1& 0\\0& 0& 0& 1\end{bmatrix}=[B]$$ Thus $\det(A) = (-1)^{3}\det(B)=-1$.
8. Find the determinant of $$[A]=\begin{bmatrix}0& 0& 0\\ 2& 3& 5\\ 6& 9& 2\end{bmatrix}$$
Solution:
$\det(A)=0$ since the first row is zero.
9. Find the determinant of $$[A]=\begin{bmatrix}0& 0& 2& 3\\ 0& 2& 3& 5\\ 6& 7& 2& 3\\ 6.6& 7.7& 2.2& 3.3\end{bmatrix}$$
Solution:
Since $R_4 = 1.1R_3$, so $\det(A) = 0$.
10. Find the determinant of $$[A]=\begin{bmatrix}5& 0& 0& 0\\ 0& 3& 0& 0\\ 2& 5& 6& 0\\ 1& 2& 3& 9\end{bmatrix}$$
Solution:
This is a lower triangular matrix and hence $$\det(A) = 5\times3\times6\times9=810$$
11. Given the matrix $$[A]=\begin{bmatrix}125& 25& 5& 1\\ 512& 64& 8& 1\\ 1157& 89& 13& 1\\ 8& 4& 2& 1\end{bmatrix}$$ and $\det(A) = -32400$. Find the determinant of $$[A_1]=\begin{bmatrix}125& 25& 5& 1\\ 512& 64& 8& 1\\ 1141& 81& 9& -1\\ 8& 4& 2& 1\end{bmatrix};$$ $$[A_2]=\begin{bmatrix}125& 25& 1& 5\\ 512& 64& 1& 8\\ 1157& 89& 1& 13\\ 8& 4& 1& 2\end{bmatrix};$$ $$[A_3] = \begin{bmatrix} 125& 25& 5& 1\\ 1157& 89& 13& 1\\ 512& 64& 8& 1\\8& 4& 2& 1\end{bmatrix};$$ $$[A_4] = \begin{bmatrix} 125& 25& 5& 1\\ 1157& 89& 13& 1\\ 8& 4& 2& 1\\ 512& 64& 8& 1\end{bmatrix};$$ $$[A_5] = \begin{bmatrix} 125& 25& 5& 1\\ 512& 64& 8& 1\\ 1157& 89& 13& 1\\ 16& 8& 4& 2 \end{bmatrix}.$$
Solution:
$$[A]=\begin{bmatrix}125& 25& 5& 1\\ 512& 64& 8& 1\\ 1157& 89& 13& 1\\ 8& 4& 2& 1\end{bmatrix}\Rightarrow R_3-2R_4 \begin{bmatrix}125& 25& 5& 1\\ 512& 64& 8& 1\\ 1141& 81& 9& -1\\ 8& 4& 2& 1\end{bmatrix}=[A_1]$$ Thus $\det(A_1) = \det(A) =-32400$. $$[A]=\begin{bmatrix}125& 25& 5& 1\\ 512& 64& 8& 1\\ 1157& 89& 13& 1\\ 8& 4& 2& 1\end{bmatrix}\Rightarrow C_3\leftrightarrow C_4 \begin{bmatrix}125& 25& 1& 5\\ 512& 64& 1& 8\\ 1157& 89& 1& 13\\ 8& 4& 1& 2\end{bmatrix} = [A_2]$$ Thus $\det(A_2)=-\det(A)=32400$. $$[A]=\begin{bmatrix}125& 25& 5& 1\\ 512& 64& 8& 1\\ 1157& 89& 13& 1\\ 8& 4& 2& 1\end{bmatrix}\Rightarrow R_2\leftrightarrow R_3\begin{bmatrix} 125& 25& 5& 1\\ 1157& 89& 13& 1\\ 512& 64& 8& 1\\8& 4& 2& 1\end{bmatrix}= [A_3]$$ Thus $\det(A_3) = -\det(A) = 32400$. $$[A]=\begin{bmatrix}125& 25& 5& 1\\ 512& 64& 8& 1\\ 1157& 89& 13& 1\\ 8& 4& 2& 1\end{bmatrix}\Rightarrow \begin{cases} R_2\leftrightarrow R_3\\ R'_3\leftrightarrow R_4\end{cases} \begin{bmatrix} 125& 25& 5& 1\\ 1157& 89& 13& 1\\ 8& 4& 2& 1\\ 512& 64& 8& 1\end{bmatrix} = [A_4]$$ Thus $\det(A_4) = (-1)^2\det(A) = -32400$. $$[A]=\begin{bmatrix}125& 25& 5& 1\\ 512& 64& 8& 1\\ 1157& 89& 13& 1\\ 8& 4& 2& 1\end{bmatrix} \Rightarrow 2R_4\begin{bmatrix} 125& 25& 5& 1\\ 512& 64& 8& 1\\ 1157& 89& 13& 1\\ 16& 8& 4& 2 \end{bmatrix} = [A_5]$$ Thus $\det(A_5) = 2\det(A) = -64800$.
12. Find the determinant of $$[A] = \begin{bmatrix}25& 5& 1\\ 64& 8& 1\\ 144& 12& 5\end{bmatrix}$$
Solution:
$$\det(A) = (-1)^{1+3}a_{13}M_{13}+(-1)^{2+3}a_{23}M_{23} + (-1)^{3+3}a_{33}M_{33}$$ $$ = \begin{vmatrix}64& 8\\ 144& 12\end{vmatrix} - \begin{vmatrix}25& 5\\ 144& 12\end{vmatrix} + 5\times \begin{vmatrix}25& 5\\ 64& 8\end{vmatrix} = -564$$
13. Show that if $[A][B]=[I]$, where $[A]$, $[B]$ and $[I]$ are matrices of $n\times n$ size and $[I]$ is an identity matrix, then $\det(A)\neq0$ and $\det(B)\neq0$.
Solution:
$$\det(A)\det(B)=\det(AB) =\det(I) = 1$$ $$\Rightarrow \det(A)\neq0,\ \det(B)\neq0.$$
14. If the determinant of a $4\times4$ matrix $[A]$ is given as 20, then what is the determinant of $5[A]$?
Solution:
$$\det(k[A])=k^n\det(A)$$ $$\Rightarrow \det(5[A]) = 5^4\det(A) = 625\times20=12500$$
15. If the matrix product $[A][B][B]$ is defined, what is $([A][B][C])^{T}$?
Solution:
$$([A][B])^{T}=[B]^{T}[A]^{T}$$
$$\Rightarrow ([A][B][C])^{T}=[C]^{T}([A][B])^{T}=[C]^{T}[B]^{T}[A]^{T}$$
16. The determinant of the matrix $$[A] = \begin{bmatrix}25& 5& 1\\ 0& 3& 8\\ 0& 9& a\end{bmatrix}$$ is 50. What is the value of $a$?
Solution:
$$\det(A) = 25\times\begin{vmatrix}3& 8\\ 9& a\end{vmatrix} = 25\times(3a-72)=50$$ $$\Rightarrow a={74\over3}$$
17. $[A]$ is a $5\times 5$ matrix and a matrix $[B]$ is obtained by the row operations of replacing Row1 with Row3, and then Row3 is replaced by a linear combination of $2\times$Row3$+4\times$Row2. If $\det(A)=17$, then what is the value of $\det(B)$?
Solution:
The process is $$[A]\Rightarrow R_1\leftrightarrow R_3 \Rightarrow 2R_3\Rightarrow R_3+4R_2\Rightarrow [B]$$ Thus $$\det(B) = (-1)\times2\cdot\det(A) = -34$$
A.Kaw矩阵代数初步学习笔记 4. Unary Matrix Operations的更多相关文章
- A.Kaw矩阵代数初步学习笔记 3. Binary Matrix Operations
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 10. Eigenvalues and Eigenvectors
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 9. Adequacy of Solutions
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 8. Gauss-Seidel Method
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 7. LU Decomposition
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 6. Gaussian Elimination
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 5. System of Equations
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 2. Vectors
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 1. Introduction
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
随机推荐
- C# WebApi Xml序列化问题解决方法:“ObjectContent`1”类型未能序列化内容类型“application/xml;charset=utf-8"的响应正文。...
在调试一个WebApi程序时,出现下面错误: 通过分析怀疑是未添加序列化属性引起的,实体类改为下面结构后,问题依旧: 通过查阅资料和不断尝试,修改实体类的属性注解搞定:
- K-means算法及文本聚类实践
K-Means是常用的聚类算法,与其他聚类算法相比,其时间复杂度低,聚类的效果也还不错,这里简单介绍一下k-means算法,下图是一个手写体数据集聚类的结果. 基本思想 k-means算法需要事先指定 ...
- 在使用EF Code First开发时,遇到的“关系”问题,以及解决方法
Entity Framework Code First 简称 EF CF也行,就是在开发的时候,以代码先行的原则,开发人员无需考虑 数据库端的一些问题(开发过程中基本不需要在数据库管理器上操作) 言归 ...
- c++ 副本构造器
我们都知道两个指针指向同一个变量时如果一个指针被释放那么另一个就会出问题 为了说明问题我做了一个很恶心的小例子 class C { public : C(int v) { ptrInt=new int ...
- 玉伯的一道课后题题解(关于 IEEE 754 双精度浮点型精度损失)
前文 的最后给出了玉伯的一道课后题,今天我们来讲讲这题的思路. 题目是这样的: Number.MAX_VALUE + 1 == Number.MAX_VALUE; Number.MAX_VALUE + ...
- css3实践之摩天轮式图片轮播+3D正方体+3D标签云(perspective、transform-style、perspective-origin)
本文主要通过摩天轮式图片轮播的例子来讲解与css3 3D有关的一些属性. demo预览: 摩天轮式图片轮播(貌似没兼容360 最好用chrome) 3D正方体(chrome only) 3D标签云(c ...
- Java面试知识点总结
本篇文章会对面试中常遇到的Java技术点进行全面深入的总结,帮助我们在面试中更加得心应手,不参加面试的同学也能够借此机会梳理一下自己的知识体系,进行查漏补缺(阅读本文需要有一定的Java基础:若您初涉 ...
- 学习SQLite之路(五) C/C++ SQLite开发实例
介绍一种乌班图中使用sqlite的用法,非常简单,下面的例子是在乌班图12.04中实现的: 1,先安装两个东西: sudo apt-get install sqlite sqlite3 sudo ap ...
- 学习SQLite之路(四)
20160621 更新 参考: http://www.runoob.com/sqlite/sqlite-tutorial.html 1. SQLite alter命令:不通过执行一个完整的转储和数 ...
- PowerShell Script to Deploy Multiple VM on Azure in Parallel #azure #powershell
Since I need to deploy, start, stop and remove many virtual machines created from a common image I c ...