洛谷P1288 取数游戏II
题目描述
有一个取数的游戏。初始时,给出一个环,环上的每条边上都有一个非负整数。这些整数中至少有一个0。然后,将一枚硬币放在环上的一个节点上。两个玩家就是以这个放硬币的节点为起点开始这个游戏,两人轮流取数,取数的规则如下:
(1)选择硬币左边或者右边的一条边,并且边上的数非0;
(2)将这条边上的数减至任意一个非负整数(至少要有所减小);
(3)将硬币移至边的另一端。
如果轮到一个玩家走,这时硬币左右两边的边上的数值都是0,那么这个玩家就输了。
如下图,描述的是Alice和Bob两人的对弈过程,其中黑色节点表示硬币所在节点。结果图(d)中,轮到Bob走时,硬币两边的边上都是0,所以Alcie获胜。

(a)Alice (b)Bob (c)Alice (d)Bob
现在,你的任务就是根据给出的环、边上的数值以及起点(硬币所在位置),判断先走方是否有必胜的策略。
输入输出格式
输入格式:
第一行一个整数N(N≤20),表示环上的节点数。
第二行N个数,数值不超过30,依次表示N条边上的数值。硬币的起始位置在第一条边与最后一条边之间的节点上。
输出格式:
仅一行。若存在必胜策略,则输出“YES”,否则输出“NO”。
输入输出样例
【输入1】
4
2 5 3 0
【输入2】
3
0 0 0
【输出1】
YES
【输出2】
NO
博弈论。
分析可知,走过一条边的时候不取完边上的数是没有意义的。
假设每走一条边都取完,如果从起点到0的位置有奇数条边,则先手必胜,否则后手必胜。
正着扫一遍,反着扫一遍,如果从起点到第一个遇到的0位置有奇数条边,先手必胜。
/*by SilverN*/
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<vector>
using namespace std;
const int mxn=;
int read(){
int x=,f=;char ch=getchar();
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,a[mxn];
int main(){
n=read();
int i,j;
for(i=;i<=n;i++)a[i]=read();
bool flag=;
for(i=;i<=n;i++)if(!a[i]){
if(i%==)flag=;
break;
}
for(i=n;i;i--)if(!a[i]){
if((n-i+)%==)flag=;
break;
}
if(flag)printf("NO\n");
else printf("YES\n");
return ;
}
洛谷P1288 取数游戏II的更多相关文章
- 洛谷P1288 取数游戏II(博弈)
洛谷P1288 取数游戏II 先手必胜的条件需要满足如下中至少 \(1\) 条: 从初始位置向左走到第一个 \(0\) 的位置,经过边的数目为偶数(包含 \(0\) 这条边). 从初始位置向右走到第一 ...
- 洛谷P1288 取数游戏II[博弈论]
题目描述 有一个取数的游戏.初始时,给出一个环,环上的每条边上都有一个非负整数.这些整数中至少有一个0.然后,将一枚硬币放在环上的一个节点上.两个玩家就是以这个放硬币的节点为起点开始这个游戏,两人轮流 ...
- 洛谷P1288 取数游戏II 题解 博弈论
题目链接:https://www.luogu.org/problem/P1288 首先,如果你的一边的边是 \(0\) ,那么你肯定走另一边. 那么你走另一边绝对不能让这条边有剩余,因为这条边有剩余的 ...
- 洛谷 P1288 取数游戏II
奇奇怪怪的游戏,不多写了 #include<cstdio> ]; int main() { int i; scanf("%d",&n); ;i<=n;i+ ...
- 洛谷1288 取数游戏II
原题链接 因为保证有\(0\)权边,所以整个游戏实际上就是两条链. 很容易发现当先手距离\(0\)权边有奇数条边,那么必胜. 策略为:每次都将边上权值取光,逼迫后手向\(0\)权边靠拢.若此时后手不取 ...
- 洛谷P1288取数游戏2
题目 博弈论. 考虑先手和后手的关系.然后可以通过统计数值不是0的数的个数来得出答案. \(Code\) #include <bits/stdc++.h> using namespace ...
- 洛谷——P1123 取数游戏
P1123 取数游戏 题目描述 一个N×M的由非负整数构成的数字矩阵,你需要在其中取出若干个数字,使得取出的任意两个数字不相邻(若一个数字在另外一个数字相邻8个格子中的一个即认为这两个数字相邻),求取 ...
- 洛谷 p1123 取数游戏【dfs】
题目链接:https://www.luogu.org/problemnew/show/P1123 转载于:>>>>>> 题目描述 一个N×M的由非负整数构成的数字矩 ...
- 洛谷 P1123 取数游戏
题目描述 一个N×M的由非负整数构成的数字矩阵,你需要在其中取出若干个数字,使得取出的任意两个数字不相邻(若一个数字在另外一个数字相邻8个格子中的一个即认为这两个数字相邻),求取出数字和最大是多少. ...
随机推荐
- [转]PHP 下使用 ZeroMQ 和 protobuf
FROM : http://www.68idc.cn/help/makewebs/php/20150118175432.html 前言 这个记录总的来说分两部分: 搭建环境. 简单使用教程. 搭建环境 ...
- (转)DataMatrix编码2——伽罗华域运算
原文出处:http://blog.sina.com.cn/s/blog_4572df4e01019wsj.html 伽罗华域即有限域,RS编码在此域中进行运算,故不得不对其有所了解.DataMatri ...
- linux查看出口ip 及w3m字符浏览器
Linux 查看服务器出口IP 字符浏览器: http://wiki.ubuntu.org.cn/W3m
- git push ERROR: missing Change-Id in commit message footer
今天上传代码时候报告错误:$ git push origin HEAD:refs/for/branch*Counting objects: 7, done.Delta compression usin ...
- 浅谈设计模式--装饰者模式(Decorator Pattern)
挖了设计模式这个坑,得继续填上.继续设计模式之路.这次讨论的模式,是 装饰者模式(Decorator Pattern) 装饰者模式,有时也叫包装者(Wrapper),主要用于静态或动态地为一个特定的对 ...
- JVM内存管理------GC简介
为何要了解GC策略与原理? 原因在上一章其实已经有所触及,就是因为在平时的工作和研究当中,不可避免的会遇到内存溢出与内存泄露的问题.如果对GC策略与原理不了解的情况下碰到了前面所说的问题,很多时候会让 ...
- [BZOJ2876][NOI2012]骑行川藏(拉格朗日乘数法)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2876 分析:就是要求约束条件下函数的极值,于是拉格朗日乘数列方程,发现化简后的关于vi ...
- [BZOJ2768][JLOI2010]冠军调查(最小割)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2768 分析: 如果一个点i认为是0,则连一条S->i,如果认为是1,则i-> ...
- swfupload提示“错误302”的解决方法
1.关于图片上传控件,flash控件的显示效果要好一些,本人使用swfupload 2.swfupload上传控件使用方式详见文档 http://www.leeon.me/upload/other/s ...
- class文件概述
将java代码编译后会产生class文件,并且一个clas文件会对应唯一一个java类或者接口.下面对一个通过一个简单的例子来简述一下class文件的结构. java代码 public class J ...