UOJ


序列中的每个位置是等价的。直接令\(f[i][j]\)表示,\(i\)个数的序列,最大值不超过\(j\)的所有序列每个长为\(k\)的子区间最大值的乘积的和。

由\(j-1\)转移到\(j\)时,考虑枚举第一个\(j\)出现在哪里。设最左边的\(j\)在\(p\)位置,那么会对左端点在\([\max(1,p-k+1),\ \min(p,i-k+1)]\)的每个\(k\)区间造成\(w[j]\)的贡献,也就是\(w[j]^{len}\)。\(p\)左边没出现过\(j\),贡献是\(f[p-1][j-1]\);\(p\)右边还可能出现\(j\),贡献是\(f[i-p][j]\)。

所以有\(f[i][j]=f[i][j-1]+\sum_{p=1}^{i}f[p-1][j-1]*w[j]^{len}*f[i-p][j]\)。

注意初始化的问题,\(f[i][j]\ (i<k)\)的初值是\(j^i\),即序列个数。(这样\(i\geq k\)的时候是会考虑序列所有构成的)

复杂度\(O(n^3)\)。


//1447ms	2052kb
#include <cstdio>
#include <cctype>
#include <algorithm>
#define mod 998244353
#define gc() getchar()
typedef long long LL;
const int N=505;
const LL LIM=1ll<<61; int pw[N][N],f[N][N]; inline int read()
{
int now=0,f=1;register char c=gc();
for(;!isdigit(c);c=='-'&&(f=-1),c=gc());
for(;isdigit(c);now=now*10+c-48,c=gc());
return now*f;
}
inline int FP(int x,int k)
{
int t=1;
for(; k; k>>=1,x=1ll*x*x%mod) k&1&&(t=1ll*x*t%mod);
return t;
} int main()
{
const int n=read(),K=read();
for(int i=1; i<=n; ++i)
{
int w=read(); pw[i][0]=1;
for(int j=1,wn=w; j<=n; ++j,w=1ll*w*wn%mod) pw[i][j]=w;
}
for(int i=0; i<=n; ++i) f[0][i]=1;
for(int i=1; i<=n; ++i)
for(int j=1; j<=n; ++j)
if(i<K) f[i][j]=FP(j,i);
else
{
LL tmp=f[i][j-1];
for(int p=1; p<=i; ++p)
tmp+=1ll*f[p-1][j-1]*f[i-p][j]%mod*pw[j][std::min(p,i-K+1)-std::max(1,p-K+1)+1], tmp>=LIM&&(tmp%=mod);
f[i][j]=tmp%mod;
}
printf("%d\n",f[n][n]); return 0;
}

UOJ.311.[UNR#2]积劳成疾(DP)的更多相关文章

  1. 【uoj#311】[UNR #2]积劳成疾 dp

    题目描述 一个长度为 $n$ 的序列,每个数在 $[1,n]$ 之间.给出 $m$ ,求所有序列的 $\prod_{i=1}^{n-m+1}(\text{Max}_{j=i}^{j+m-1}a[j]) ...

  2. 【UOJ#311】【UNR #2】积劳成疾(动态规划)

    [UOJ#311][UNR #2]积劳成疾(动态规划) UOJ Solution 考虑最大值分治解决问题.每次枚举最大值所在的位置,强制不能跨过最大值,左右此时不会影响,可以分开考虑. 那么设\(f[ ...

  3. UOJ #311「UNR #2」积劳成疾

    需要锻炼$ DP$能力 UOJ #311 题意 等概率产生一个长度为$ n$且每个数在[1,n]间随机的数列 定义其价值为所有长度为$ k$的连续子数列的最大值的乘积 给定$ n,k$求所有合法数列的 ...

  4. uoj#311. 【UNR #2】积劳成疾(期望dp)

    传送门 果然\(dp\)题就没咱啥事儿了 设\(f_{i,j}\)为长度为\(i\)的区间,所有元素的值不超过\(j\)的总的疲劳值 如果\(j\)没有出现过,那么\(f_{i,j}=f_{i,j-1 ...

  5. uoj#311 【UNR #2】积劳成疾

    题目 考虑直接顺着从\(1\)填数填到\(n\)发现这是在胡扯 所以考虑一些奇诡的东西,譬如最后的答案长什么样子 显然某一种方案的贡献是一个\(\prod_{i=1}^nw_i^{t_i}\)状物,\ ...

  6. [UOJ UNR #2]积劳成疾

    来自FallDream的博客,未经允许,请勿转载,谢谢. 传送门 区间最大值的题emmmm 想到构建笛卡尔树,这样自然就想到了一种dp f[i][j]表示大小为i的笛卡尔树,根的权值是j的答案. 转移 ...

  7. uoj【UNR #3】To Do Tree 【贪心】

    题目链接 uojUNR3B 题解 如果不输出方案,是有一个经典的三分做法的 但是要输出方案也是可以贪心的 设\(d[i]\)为\(i\)节点到最深的儿子的距离 贪心选择\(d[i]\)大的即可 #in ...

  8. UOJ.386.[UNR #3]鸽子固定器(贪心 链表)

    题目链接 \(Description\) 选最多\(m\)个物品,使得它们的\((\sum vi)^{dv}-(s_{max}-s_{min})^{du}\)最大. \(Solution\) 先把物品 ...

  9. Uoj 441 保卫王国

    Uoj 441 保卫王国 动态 \(dp\) .今天才来写这个题. 设 \(f[u][0/1]\) 表示子树 \(u\) 中不选/选 \(u\) 时的最小权值和,显然有:\(f[u][0]=\sum ...

随机推荐

  1. Koa与Node.js开发实战(1)——Koa安装搭建(视频演示)

    学习架构: 由于Koa2已经支持ES6及更高版本,包括支持async方法,所以请读者保证Node.js版本在7.6.0以上.如果需要在低于7.6的版本中应用Koa的async方法,建议使用Babel ...

  2. 关于读取XML文件代码【学习笔记】

    public class XmlManager { private XmlDocument m_XMLDoc = null; public XmlManager(XmlDocument xmldoc) ...

  3. JQuery基本知识、选择器、事件、DOM操作、动画

  4. luogu P3810 三维偏序(陌上花开)cdq分治

    题目链接 思路 对一维排序后,使用$cdq$分治,以类似归并排序的方法处理的二维,对于满足$a[i].b \leq a[j].b$的点对,用树状数组维护$a[i].c$的数量.当遇到$a[i].b&g ...

  5. Quartz.NET 入门(转)

    概述 Quartz.NET是一个开源的作业调度框架,非常适合在平时的工作中,定时轮询数据库同步,定时邮件通知,定时处理数据等. Quartz.NET允许开发人员根据时间间隔(或天)来调度作业.它实现了 ...

  6. mingw-gcc-8.3.0-i686-posix-sjlj

    网上无法找到 gcc-8.3.0 的 posix 版本, 所以自己编译了这个版本 gcc -v Using built-in specs. COLLECT_GCC=d:\msys\mingw\bin\ ...

  7. vue 双向数据绑定的实现学习(一)

    前言:本系列学习笔记从以下几个点展开 什么是双向数据绑定 双向数据绑定的好处 怎么实现双向数据绑定 实现双向数据数据绑定需要哪些知识点 数据劫持 发布订阅模式 先看看我们要实现的目标是什么,如下动图: ...

  8. react給變量賦值并列元素

    今天在使用react時發現一個問題:我在給一個變量賦值多個元素,但不能用div包含起來. 如: var p = <div> <p></p> <p>< ...

  9. 高可用Redis(五):瑞士军刀之慢查询,Pipeline和发布订阅

    1.慢查询 1.1 慢查询的生命周期 步骤一:client通过网络向Redis发送一条命令 步骤二:由于Redis是单线程应用,可以把Redis想像成一个队列,client执行的所有命令都在排队等着s ...

  10. psutil(搬运,一个月后稍后修改)

    psutil是一个跨平台库,能够轻松实现获取系统运行的进程和系统利用率(包括CPU.内存.磁盘.网络等)信息.它主要用来做系统监控,性能分析,进程管理 安装:pip install psutil 1. ...