题目描述

物流公司要把一批货物从码头A运到码头B。由于货物量比较大,需要n天才能运完。货物运输过程中一般要转停好几个码头。物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格的管理和跟踪。由于各种因素的存在,有的时候某个码头会无法装卸货物。这时候就必须修改运输路线,让货物能够按时到达目的地。但是修改路线是—件十分麻烦的事情,会带来额外的成本。因此物流公司希望能够订一个n天的运输计划,使得总成本尽可能地小。

输入输出格式

输入格式:

第一行是四个整数n(l≤n≤100)、m(l≤m≤20)、K和e。n表示货物运输所需天数,m表示码头总数,K表示每次修改运输路线所需成本,e表示航线条数。接下来e行每行是一条航线描述,包括了三个整数,依次表示航线连接的两个码头编号以及航线长度(>0)。其中码头A编号为1,码头B编号为m。单位长度的运输费用为1。航线是双向的。再接下来一行是一个整数d,后面的d行每行是三个整数P(1<P<m),a,b(1≤a≤b≤n)。表示编号为P的码头从第a天到第b天无法装卸货物(含头尾)。同一个码头有可能在多个时间段内不可用。但任何时间都存在至少一条从码头A到码头B的运输路线。

输出格式:

包括了一个整数表示最小的总成本。总成本=n天运输路线长度之和+K*改变运输路线的次数。

输入输出样例

输入样例#1:

5 5 10 8
1 2 1
1 3 3
1 4 2
2 3 2
2 4 4
3 4 1
3 5 2
4 5 2
4
2 2 3
3 1 1
3 3 3
4 4 5

输出样例#1:

32

【样例输出说明】

前三天走1-4-5,后两天走1-3-5,这样总成本为(2+2)*3+(3+2)*2+10=32。

_NOI导刊2010提高(01)

解析:

这是2006年浙江省选的题,,,

由于要求最少的花费,而花费又和航程成正比,且最终的花费不会影响之前的阶段。所以求航程的最短路,然后dp

dp去枚举改路的时间,设dp[i]表示第i天的时候最少花费。

于是就有了状态转移方程dp[i]=min(dp[i],dp[j-1]+(i-j+1)*s+k)

这个方程表示在第j天更改路线,其中s表示当时状态的最短路(通过No数组记录无法到达的码头)

这里用的是spfa,由于没有负权,也可以用dijkstra。

k表示更改一次路径所需的费用

这里所要注意的是dp数组的初始化问题,由于要求最少花费,所以把dp数赋值为一个很大的数,由于第一次选航线没有花费,所以把dp[0]赋值为-k;

最后是一个优化问题,在第j天没有最短路的时候,再往下也不会有最短路,因为被封禁的码头只会越来越多,不会越来越少。

下面上代码:

 #include<iostream>
#include<cstring>
#include<queue>
#define inf 336860180
using namespace std;
long long n,m,k,e,map[][],dist[],total,b1,b2,b3,d,dp[];
bool pd[],no[][],No[];//No数组记录无法到达的港口,no[i][j]表示第i天无法到达j港口
int spfa()//最短路
{
memset(dist,,sizeof(dist));
memset(pd,,sizeof(pd));
queue<int>q;
q.push();
dist[]=;
while(q.size())
{
int x=q.front();
q.pop();
pd[x]=;
for(int i=;i<=m;i++)
{
if(No[i])continue;
if(dist[i]>dist[x]+map[x][i])
{
dist[i]=dist[x]+map[x][i];
if(!pd[i])
{
q.push(i);
pd[i]=;
}
}
}
}
return dist[m];
}
int main()
{
memset(map,,sizeof(map));
memset(dp,,sizeof(dp));
cin>>n>>m>>k>>e;
for(int i=;i<=e;i++)
{
cin>>b1>>b2>>b3;
map[b1][b2]=map[b2][b1]=b3;
}
cin>>d;
for(int i=;i<=d;i++)
{
cin>>b1>>b2>>b3;
for(int j=b2;j<=b3;j++)
{
no[j][b1]=;
}
}
dp[]=-k;
for(int i=;i<=n;i++)
{
memset(No,,sizeof(No));
for(int j=i;j>=;j--)
{
for(int f=;f<=m;f++)
{
if(no[j][f])No[f]=;
}
int s=spfa();
if(s==inf)break;//优化
dp[i]=min(dp[i],dp[j-]+(i-j+)*s+k);
}
}
cout<<dp[n];
return ;
}

  

P1772 [ZJOI2006]物流运输的更多相关文章

  1. 洛谷P1772 [ZJOI2006]物流运输

    P1772 [ZJOI2006]物流运输 题目描述 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条固定的运输路线 ...

  2. [luogu] P1772 [ZJOI2006]物流运输(动态规划,最短路)

    P1772 [ZJOI2006]物流运输 题目描述 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条固定的运输路线 ...

  3. 洛谷P1772 [ZJOI2006]物流运输 题解

    题目描述 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格的管理和跟踪. ...

  4. luogu P1772 [ZJOI2006]物流运输

    题目描述 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格的管理和跟踪. ...

  5. P1772 [ZJOI2006]物流运输[DP+最短路]

    题目描述 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格的管理和跟踪. ...

  6. P1772 [ZJOI2006]物流运输 最短路+DP

    思路:最短路+DP 提交:1次 题解: $f[i]$表示到第$i$天的最小代价,我们可以预先处理出$i,j$两天之间(包括$i,j$)都可通行的最短路的代价记做$s[i][j]$,然后有$f[i]=m ...

  7. luoguP1772 [ZJOI2006]物流运输 x

    P1772 [ZJOI2006]物流运输 题目描述 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条固定的运输路线 ...

  8. [ZJOI2006]物流运输

    1003: [ZJOI2006]物流运输 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 5999  Solved: 2473[Submit][Stat ...

  9. bzoj1003 [ZJOI2006]物流运输

    1003: [ZJOI2006]物流运输 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 6300  Solved: 2597[Submit][Stat ...

随机推荐

  1. 入门级----黑盒测试、白盒测试、手工测试、自动化测试、探索性测试、单元测试、性能测试、数据库性能、压力测试、安全性测试、SQL注入、缓冲区溢出、环境测试

    黑盒测试 黑盒测试把产品软件当成是一个黑箱子,只有出口和入口,测试过程中只要知道往黑盒中输入什么东西,知道黑盒会出来什么结果就可以了,不需要了解黑箱子里面是如果做的. 即测试人员不用费神去理解软件里面 ...

  2. (88)Wangdao.com第二十一天_JavaScript 元素节点Element 节点

    Element 节点 (元素节点) 是一组对象 对应网页的 HTML 元素 每一个 HTML 元素,在 DOM 树上都会转化成一个 Element 节点对象(以下简称元素节点) 所有元素节点的 nod ...

  3. uri&url

    统一资源标志符URI就是在某一规则下能把一个资源独一无二地标识出来. 拿人做例子,假设这个世界上所有人的名字都不能重复,那么名字就是URI的一个实例,通过名字这个字符串就可以标识出唯一的一个人.现实当 ...

  4. js高级1

    1.每一个元素身上的事件都是天生自带的,不需要我们去定义,只需要我们给这个事件绑定的方法,当事件触发的时候就会执行这个方法. 2.事件绑定的方法 1,div.onclick=function(){}  ...

  5. Float.intBitsToFloat

    Float.intBitsToFloat(0b) Float.intBitsToFloat(0) Float.intBitsToFloat(0x) ========================== ...

  6. python语法_深浅拷贝

    浅拷贝,.copy 只拷贝第一层(可用于建立银行共享账号). s1 = [‘a’,'b','c'] s2 = s1.copy() s2[0]='d' print(s2) print(s1) 此时修改s ...

  7. js 类

    ---恢复内容开始--- <!DOCTYPE html> <html lang="zh-cn"> <head> <meta charset ...

  8. 在linux服务器新添加硬盘,如何识别、挂载。

    在linux服务器新添加硬盘,如何识别.怎样挂载磁盘.过程是怎么样. fdisk - manipulate disk partition tablemkfs - build a Linux files ...

  9. ORACLE中dba,user,v$等开头的常用表和视图

    一.Oracle表明细及说明1.dba_开头表    dba_users           数据库用户信息    dba_segments    表段信息    dba_extents        ...

  10. Linux系统中存储设备的两种表示方法

    转:https://blog.csdn.net/holybin/article/details/38637381 一.对于IDE接口的硬盘的两种表示方法: 1.IDE接口硬盘,对于整块硬盘的两种表示方 ...