剑指offer 9.递归和循环 变态跳台阶
题目描述
前提是n个台阶会有一次n阶的跳法。分析如下:
f(1) = 1
f(2) = f(2-1) + f(2-2) //f(2-2) 表示2阶一次跳2阶的次数。
f(3) = f(3-1) + f(3-2) + f(3-3)
...
f(n) = f(n-1) + f(n-2) + f(n-3) + ... + f(n-(n-1)) + f(n-n)
说明:
1)这里的f(n) 代表的是n个台阶有一次1,2,...n阶的 跳法数。
2)n = 1时,只有1种跳法,f(1) = 1
3) n = 2时,会有两个跳得方式,一次1阶或者2阶,这回归到了问题(1) ,f(2) = f(2-1) + f(2-2)
4) n = 3时,会有三种跳得方式,1阶、2阶、3阶,
那么就是第一次跳出1阶后面剩下:f(3-1);第一次跳出2阶,剩下f(3-2);第一次3阶,那么剩下f(3-3)
因此结论是f(3) = f(3-1)+f(3-2)+f(3-3)
5) n = n时,会有n中跳的方式,1阶、2阶...n阶,得出结论:
f(n) = f(n-1)+f(n-2)+...+f(n-(n-1)) + f(n-n) =>
f(0) + f(1) + f(2) + f(3) + ... + f(n-1)
6) 由以上已经是一种结论,但是为了简单,我们可以继续简化:
f(n-1) = f(0) + f(1)+f(2)+f(3) + ... + f((n-1)-1) =
f(0) + f(1) + f(2) + f(3) + ... + f(n-2)
f(n) = f(0) + f(1) + f(2) + f(3) + ... + f(n-2) +
f(n-1) = f(n-1) + f(n-1)
可以得出:
f(n) = 2*f(n-1)
7) 得出最终结论,在n阶台阶,一次有1、2、...n阶的跳的方式时,总得跳法为:
| 1 ,(n=0 )
f(n) = | 1 ,(n=1 )
|
1
2
3
4
5
6
7
8
9
10
11
|
public class Solution { public int JumpFloorII(int target) { if (target <= 0) { return -1; } else if (target == 1) { return 1; } else { return 2 * JumpFloorII(target - 1); } }} |
剑指offer 9.递归和循环 变态跳台阶的更多相关文章
- [剑指OFFER] 斐波那契数列- 跳台阶 变态跳台阶 矩形覆盖
跳台阶 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. class Solution { public: int jumpFloor(int number) ...
- 【剑指Offer】面试题10- II. 青蛙跳台阶问题
题目 一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶.求该青蛙跳上一个 n 级的台阶总共有多少种跳法. 答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返 ...
- 剑指offer 8.递归和循环 跳台阶
题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 解题思路一: a.如果两种跳法,1阶或者2阶,那么假定第一次跳的是 ...
- 剑指offer 10.递归和循环 矩形覆盖
题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 当n=0时 ,target=0: 当n=1时 ,ta ...
- 剑指offer 7. 递归和循环 斐波那契数列
题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). n<=39 简简单单 废话不多说,直接上代码: public class Sol ...
- 【校招面试 之 剑指offer】第10-2题 青蛙跳台阶问题
题目1:一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶.求该青蛙跳上一个n级台阶共有多少种跳法? 题目2:一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶...也可以一次跳n级台阶.求该青蛙跳上一个 ...
- 《剑指offer》— JavaScript(8)跳台阶
跳台阶 题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 实现代码 function jumpFloor(number) { if (number& ...
- 《剑指offer》面试题10- II. 青蛙跳台阶问题
问题描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶.求该青蛙跳上一个 n 级的台阶总共有多少种跳法. 答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008, ...
- 剑指Offer——全排列递归思路
剑指Offer--全排列递归思路 前言 全排列,full permutation, 可以利用二叉树的遍历实现.二叉树的递归遍历,前中后都简洁的难以置信,但是都有一个共同特点,那就是一个函数里包含两次自 ...
随机推荐
- Qt笔记-const-虚函数-元对象系统
const与指针 摘自C++ Primer Plus (第五版) 中文版 const(常量): const变量的地址可以给指向const的指针,但不能指向常规类型的指针: const float a= ...
- Intellij IDEA xxx.properties变成纯文本模式解决方案
今天在创建xxx.properties的时候不知道按到了哪里,结果让它编程了纯文本模式,重命名这个文件或者删掉,重新创建这个同名文件,换一个项目,始终是文本文件类型,就估计不是项目问题,是intell ...
- ORACLE存储过程定时器例子(存储过程变量赋值)
CREATE OR REPLACE PROCEDURE SP_DSSJTS_XMRSLOG as str1 ); str2 ); str3 ); begin select 'xmrslog_'||ex ...
- 纯js星级评分
@{ Layout = null;} <!DOCTYPE html> <html><head> <meta name="viewport" ...
- Linux:Gentoo系统的安装笔记(一)
这次我选择安装Gentoo,用来做我学习的笔记.这次我是使用虚拟机安装Gentoo,一是方便操作,二是可以看着手册,一边看一边操作,严格按照手册上的步骤执行,一般是不会出现问题的. 查看手册最好学会看 ...
- TCP端口检测工具
很多时候,我们需要测试 tcp 端口.ping 命令虽然好用,但不能测试端口,因为 ping 基于ICMP协议,属于IP层协议,所以无法测试传输层的 TCP/UDP 端口.幸好有tcping命令,可以 ...
- Docker多主机互联最佳实践
在公司使用docker多主机互联时碰到了各种坑.搞清楚后才发现如此简单,以下是根据实际经验的总结. 版本信息 Client: Version: 18.09.0 API version: 1.39 Go ...
- python定时脚本判断服务器内存
经常我们会发现服务器跑着跑着内存使用率达到了百分之八九十,或者有时候直接挂掉,在我们还没定位是哪块代码有问题导致内存占用很大的时候,可以先写个定时脚本,当服务器内存使用率达到一定值的时候,就重启一起服 ...
- git教程:工作区和暂存区
Git和其他版本控制系统如SVN的一个不同之处就是有暂存区的概念. 先来看名词解释. 工作区(Working Directory) 就是你在电脑里能看到的目录,比如我的learngit文件夹就是一个工 ...
- Canvas 渲染模式
1. Canvas Canvas Component 是UI布局和渲染的抽象空間,所有的UI都必須在此元素之下(子物件),简单来说 Canvas 就是渲染 UI 的組件. 2. Render Mode ...