import tensorflow as tf

a = tf.constant([1.0, 2.0], name='a', dtype=tf.float32)  # 定义常量向量
b = tf.constant([2.0, 3.0], name='b')
result = a + b # 向量相加
print(result) # 先生成一个会话,通过该会话来计算结果
# sess = tf.Session()
sess = tf.InteractiveSession() # 自动将生成的会话注册为默认会话
print(sess.run(result))
print(result.eval(session=sess))
sess.close() # 关闭会话,释放资源

计算模型

  • TensorFlow中的所有计算都会被转化为计算图上的节点。
  • 而节点之间的边描述了计算之间的依赖关系。
  • 在TensorFlow中,张量可以被简单地理解为多维数组。
  • TensorFlow是一个通过计算图的形式来表述计算的编程系统。
g1 = tf.Graph()  # 生成新的计算图
with g1.as_default():
# 在计算图g1中定义变量'v',并设置初始值为0
v = tf.get_variable("v", initializer=tf.zeros(shape=[1])) # 在计算图g1中读取变量'v'的值
with tf.Session(graph=g1) as sess: # 通过上下文管理器来使用会话
tf.global_variables_initializer().run()
with tf.variable_scope('', reuse=True):
print(sess.run(tf.get_variable('v')))

数据模型

  • 在张量中,并没有真正保存数字,它保存的是如何得到这些数字的计算过程。
  • 一个张量中主要保存了三个属性:名字、维度、类型。
  • 张量的命名可通过"node:src_output"的形式给出。其中,node为节点名称,src_output表示当前张量来自节点的第几个输出。
  • TensorFlow支持的类型主要包括:tf.float32, tf.float64, tf.int8, tf.int16, tf.int32, tf.int64, tf.uint8, tf.bool, tf.complex64, tf.complex128

运行模型

config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=True)
sess1 = tf.InteractiveSession(config=config)
sess2 = tf.Session(config=config)

TensorFlow及神经网络

神经网络解决分类问题的主要步骤:

  • 提取问题中实体的特征向量作为神经网络的输入。
  • 定义神经网络的结构,并定义如何从神经网络的输入得到输出。
  • 通过训练数据来调整神经网络中参数的取值,这就是训练神经网络的过程。
  • 使用训练好的神经网络来预测未知的数据。

全连接神经网络:相邻两层之间任意两个节点之间都有连接。

TensorFlow支持的随机数生成函数:

  • tf.random_normal:正态分布。
  • tf.truncated_normal:正态分布,但若随机值偏离平均值超过2个标准差,将被重新随机。
  • tf.random_uniform:平均分布。
  • tf.random_gamma:Gamma分布。

TensorFlow常数生成函数:

  • tf.zeros([2,3], int32):产生全0的数组。
  • tf.ones([2,3], int32):产生全1的数组。
  • tf.fill([2,3], 9):产生一个全部为给定数字的组合。
  • tf.constant([1,2,3):产生一个给定值的常量。
# 声明一个2*3的矩阵变量,并赋予均值为0,标准差为2的随机数
weigths = tf.Variable(tf.random_normal([2, 3], mean=0, stddev=2))
biases = tf.Variable(tf.zeros([3]))
w1 = tf.Variable(tf.random_normal([2, 3], stddev=1, seed=1))  # 该运算的输出结果即为张量
w2 = tf.Variable(tf.random_normal([3, 1], stddev=1, seed=1))
x = tf.constant([[0.7, 0.9]]) # 1*2的矩阵 a = tf.matmul(x, w1) # 矩阵乘法
y = tf.matmul(a, w2) with tf.Session() as sess:
# sess.run(w1.initializer) # 逐个初始化变量
# sess.run(w2.initializer)
# 初始化所有变量
init_op = tf.global_variables_initializer()
sess.run(init_op)
print(sess.run(y))
print(tf.all_variables)
  • tf.all_variables:可拿到当前计算图上所有的变量。
  • tf.trainable_variables:得到所有需要优化的参数。
  • 变量的类型是不可改变的。
  • 维度在程序运行中是有可能改变的,需通过设置参数validate_shape=False
w1 = tf.Variable(tf.random_normal([2, 3], stddev=1, seed=1))
w2 = tf.Variable(tf.random_normal([2, 2], stddev=1, seed=1)) # tf.assign(w1, w2) # wrong
tf.assign(w1, w2, validate_shape=False)
# 使用placeholder实现前向传播算法
w1 = tf.Variable(tf.random_normal([2, 3], stddev=1, seed=1))
w2 = tf.Variable(tf.random_normal([3, 1], stddev=1, seed=1)) # 输入为n*2矩阵,前向传播结果为n*1的矩阵
# placeholder中数据的维度信息可以根据提供的数据推导得出,所有不一定要给出
x = tf.placeholder(tf.float32, shape=(3, 2), name='input')
a = tf.matmul(x, w1)
y = tf.matmul(a, w2) sess = tf.Session()
init_op = tf.global_variables_initializer()
sess.run(init_op) # print(sess.run(y)) # 某个需要的placeholder没有被指定取值,报错
print(sess.run(y, feed_dict={x: [[0.7, 0.9], [0.1, 0.4], [0.5, 0.8]]})) # 指定x的取值
from numpy.random import RandomState

batch_size = 8

w1 = tf.Variable(tf.random_normal([2, 3], stddev=1, seed=1))
w2 = tf.Variable(tf.random_normal([3, 1], stddev=1, seed=1)) x = tf.placeholder(tf.float32, shape=(None, 2), name='x-input')
y_ = tf.placeholder(tf.float32, shape=(None, 1), name='y-input') a = tf.matmul(x, w1)
y = tf.matmul(a, w2) # 定义损失函数和反向传播的算法
cross_entropy = -tf.reduce_mean(y_ * tf.log(tf.clip_by_value(y, 1e-10, 1.0)))
train_step = tf.train.AdamOptimizer(0.001).minimize(cross_entropy) # 通过随机数生成一个模拟数据集
rdm = RandomState(1)
dataset_size = 128
X = rdm.rand(dataset_size, 2)
Y = [[int(x1 + x2 < 1)] for (x1, x2) in X] # 创建会话
with tf.Session() as sess:
init_op = tf.global_variables_initializer()
sess.run(init_op)
print(sess.run(w1))
print(sess.run(w2)) STEPS = 5000 # 训练的轮数
for i in range(STEPS):
# 每次选取batch_size个样本进行训练
start = (i * batch_size) % dataset_size
end = min(start+batch_size, dataset_size)
# 根据样本训练神经网络并更新参数
sess.run(train_step, feed_dict={x: X[start:end], y_: Y[start:end]}) if i % 1000 == 0:
# 每个一定轮数,计算在所有数据上的交叉熵
total_cross_entropy = sess.run(cross_entropy, feed_dict={x: X, y_: Y})
print("After %d training step(s), cross entropy on all data is %g" % (i, total_cross_entropy)) print(sess.run(w1))
print(sess.run(w2))

一、TensorFlow初探的更多相关文章

  1. tensorflow初探

    TensorFlow是一个采用数据流图,用于数值计算的开源软件库.自己接触tensorflow比较的早,可是并没有系统深入的学习过,现在TF在深度学习已经成了"标配",所以打算系统 ...

  2. TensorFlow初探之简单神经网络训练mnist数据集(TensorFlow2.0代码)

    from __future__ import print_function from tensorflow.examples.tutorials.mnist import input_data #加载 ...

  3. 算法初探:Tensorflow及PAI平台的使用

    前言 Tensorflow这个词由来已久,但是对它的理解一直就停留在“听过”的层面.之前做过一个无线图片适配问题智能识别的项目,基于Tensorflow实现了GoogLeNet - Inception ...

  4. 【Magenta 项目初探】手把手教你用Tensorflow神经网络创造音乐

    原文链接:http://www.cnblogs.com/learn-to-rock/p/5677458.html 偶然在网上看到了一个让我很感兴趣的项目 Magenta,用Tensorflow让神经网 ...

  5. TensorFlow入门——MNIST初探

    import tensorflow.examples.tutorials.mnist.input_data as input_data import tensorflow as tf mnist = ...

  6. 深度学习初探——符号式编程、框架、TensorFlow

    一.命令式编程(imperative)和符号式编程(symblic) 命令式: import numpy as np a = np.ones(10) b = np.ones(10) * 2 c = b ...

  7. tensorflow学习5----GAN模型初探

    生成模型: 通过观测学习样本和标签的联合概率分布P(X,Y)进行训练,训练好的模型能够生成符合样本分布的新数据,在无监督学习方面,生成式模型能够捕获数据的高阶相关性,通过学习真实数据的本质特征,刻画样 ...

  8. tensorflow笔记(五)之MNIST手写识别系列二

    tensorflow笔记(五)之MNIST手写识别系列二 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7455233.html ...

  9. 『TensorFlow』专题汇总

    TensorFlow:官方文档 TensorFlow:项目地址 本篇列出文章对于全零新手不太合适,可以尝试TensorFlow入门系列博客,搭配其他资料进行学习. Keras使用tf.Session训 ...

随机推荐

  1. ES6躬行记(12)——数组

    ES6为数组添加了多个新方法,既对它的功能进行了强化,也消除了容易产生歧义的语法. 一.静态方法 1)of() ES6为Array对象新增的第一个静态方法是of(),用于创建数组,它能接收任意个参数, ...

  2. JDBC与ORM发展与联系 JDBC简介(九)

    概念回顾 回顾下JDBC的概念: JDBC(Java Data Base Connectivity,java数据库连接)是一种用于执行SQL语句的Java API,可以为多种关系数据库提供统一访问,它 ...

  3. Storm环境搭建(分布式集群)

    作为流计算的开篇,笔者首先给出storm的安装和部署,storm的第二篇,笔者将详细的介绍storm的工作原理.下边直接上干货,跟笔者的步伐一块儿安装storm. 原文链接:Storm环境搭建(分布式 ...

  4. #7 Python代码调试

    前言 Python已经学了这么久了,你现在已经长大了,该学会自己调试代码了!相信大家在编写程序过程中会遇到大量的错误信息,我也不例外的啦-遇到这些问题该怎么解决呢?使用最多的方法就是使用print打印 ...

  5. 在windows中创建.gitignore文件

    1.先任意创建一个文件,例如:1.txt 2.打开cmd命令行窗口,到1.txt目录下 windows7/8输入ren 1.txt .gitignore修改成功 windows10输入mv 1.txt ...

  6. 50.Linux-分析ifconfig到内核的调用过程,实现内核启机自动设MAC地址(原)

    内核版本: Linux version 3.10.14 1.由于每次开发板开机的网卡eth0的物理地址都是随机的. 然后在网上找到可以通过命令行实现设置mac物理地址: ifconfig eth0 d ...

  7. elementui el-upload 在v-for里使用时 如何获取index

    <div v-for = 'item in list'> <div @click="getImageTypeIndex(index)"> <el-up ...

  8. JavaScript splice() 方法和JavaScript split() 方法

    定义和用法 splice() 方法向/从数组中添加/删除项目,然后返回被删除的项目. 注释:该方法会改变原始数组. 语法 arrayObject.splice(index,howmany,item1, ...

  9. ssm基础搭建步骤

    今天搭建新的项目环境,从网上找了些ssm的搭建步骤,终于找到了一位csdn的大佬,可以说写的特别详细,按照上面步骤搭建即可,为了方便日后参考,转载到本人博客,原文链接:https://blog.csd ...

  10. 如何用ABP框架快速完成项目(面向项目交付编程面向客户编程篇)(1) - 目录

    昨天发表了<如何用ABP框架快速完成项目 - 自动化测试 - 前端angular e2e protractor>后,大家十分热情,几个小时内就收到了不少问题,包括: 对于ui自动化测试这方 ...