【bzoj 3495】PA2010 Riddle
Description
有n个城镇被分成了k个郡,有m条连接城镇的无向边。要求给每个郡选择一个城镇作为首都,满足每条边至少有一个端点是首都。
Input
第一行有三个整数,城镇数n(1<=n<=10^6),边数m(0<=m<=10^6),郡数k(1<=k<=n)。
接下来m行,每行有两个整数ai和bi(ai≠bi),表示有一条无向边连接城镇ai和bi。
接下来k行,第j行以一个整数wj开头,后面是wj个整数,表示第j个郡包含的城镇。
Output
若有解输出TAK,否则输出NIE。
每个点 $x$ 拆成两对点,$x$ 代表选择 $x$ 为首都,$x+n$ 表示不选择 $x$ 为首都,$x+2n$ 表示 $x$ 的前缀已包含首都,$x+3n$表示 $x$ 的前缀不包含首都。
对于每一条原图中无向边 $(x,y)$ ,因为至少有一个端点为首都,连边 $(x+n,y)$ ,$(y+n,x)$。
对于每一个点 $x$ ,连边 $(x,x+2n)$ ,$(x+3n,x+n)$。
对于每一个点 $x$ 与它的上一个点 $last$ ,连边方式如下:$(last+2n,x+2n)$,$(x+3n,last+3n)$,$(last+2n,x+n)$,$(x,last+3n)$。
#include<cstdio>
#include<algorithm>
#include<cstring>
#define LL long long
using namespace std;
const int N=4e6+;
int n,m,k,cnt,x,y,last,tim,top,color;
int first[N],dfn[N],low[N],sta[N],c[N];
bool vis[N];
struct edge{int to,next;}e[N*];
void ins(int u,int v){e[++cnt]=(edge){v,first[u]};first[u]=cnt;}
int read()
{
int x=,f=;char c=getchar();
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
void tarjan(int x)
{
low[x]=dfn[x]=++tim;
sta[++top]=x;vis[x]=true;
for(int i=first[x];i;i=e[i].next)
{
int to=e[i].to;
if(!dfn[to])tarjan(to),low[x]=min(low[x],low[to]=min(low[x],low[to]));
else if(vis[to])low[x]=min(low[x],dfn[to]);
}
if(low[x]==dfn[x])
{
color++;
while(sta[top]!=x)vis[sta[top]]=false,c[sta[top--]]=color;
vis[x]=false;c[x]=color;top--;
}
}
bool check()
{
for(int i=;i<=n;i++)
if(c[i]==c[i+n]||c[i+*n]==c[i+*n])return false;
return true;
}
int main()
{
n=read();m=read();k=read();
for(int i=;i<=m;i++)
{
x=read();y=read();
ins(x+n,y);ins(y+n,x);
}
for(int i=;i<=k;i++)
{
x=read();last=;
for(int j=;j<=x;j++)
{
y=read();
ins(y,y+*n);ins(y+*n,y+n);
if(last)
{
ins(last+*n,y+*n);
ins(y+*n,last+*n);
ins(last+*n,y+n);
ins(y,last+*n);
}
last=y;
}
}
for(int i=;i<=*n;i++)if(!dfn[i])tarjan(i);
if(check())printf("TAK");
else printf("NIE");
return ;
}
【bzoj 3495】PA2010 Riddle的更多相关文章
- 【BZOJ 1150】 1150: [CTSC2007]数据备份Backup (贪心+优先队列+双向链表)
1150: [CTSC2007]数据备份Backup Description 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味 的,因此你想设 ...
- Kruskal算法及其类似原理的应用——【BZOJ 3654】tree&&【BZOJ 3624】[Apio2008]免费道路
首先让我们来介绍Krukal算法,他是一种用来求解最小生成树问题的算法,首先把边按边权排序,然后贪心得从最小开始往大里取,只要那个边的两端点暂时还没有在一个联通块里,我们就把他相连,只要这个图里存在最 ...
- 【BZOJ 2957】楼房重建&&Codechef COT5 Count on a Treap&&【NOIP模拟赛】Weed 线段树的分治维护
线段树是一种作用于静态区间上的数据结构,可以高效查询连续区间和单点,类似于一种静态的分治.他最迷人的地方在于“lazy标记”,对于lazy标记一般随我们从父区间进入子区间而下传,最终给到叶子节点,但还 ...
- LCA 【bzoj 4281】 [ONTAK2015]Związek Harcerstwa Bajtockiego
[bzoj 4281] [ONTAK2015]Związek Harcerstwa Bajtockiego Description 给定一棵有n个点的无根树,相邻的点之间的距离为1,一开始你位于m点. ...
- 【BZOJ 1191】 [Apio2010]特别行动队 (斜率优化)
dsy1911: [Apio2010]特别行动队 [题目描述] 有n个数,分成连续的若干段,每段的分数为a*x^2+b*x+c(a,b,c是给出的常数),其中x为该段的各个数的和.求如何分才能使得各个 ...
- 【BZOJ 1096】 [ZJOI2007]仓库建设 (斜率优化)
1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3940 Solved: 1736 Description ...
- 【BZOJ 2132】圈地计划 && 【7.22Test】计划
两种版本的题面 Description 最近房地产商GDOI(Group of Dumbbells Or Idiots)从NOI(Nuts Old Idiots)手中得到了一块开发土地.据了解,这块土 ...
- -【线性基】【BZOJ 2460】【BZOJ 2115】【HDU 3949】
[把三道我做过的线性基题目放在一起总结一下,代码都挺简单,主要就是贪心思想和异或的高斯消元] [然后把网上的讲解归纳一下] 1.线性基: 若干数的线性基是一组数a1,a2,a3...an,其中ax的最 ...
- 【BZOJ 1032】 [JSOI2007]祖码Zuma
[题目链接]:http://www.lydsy.com/JudgeOnline/problem.php?id=1032 [题意] [题解] /* 设f[i][j]表示从第i个珠子开始的j个珠子被消除; ...
随机推荐
- IDEA 代码风格设置
1.类注释 File -> Settings -> Editor -> File and Code Templates -> Includes -> FileHeader ...
- 001_python实现数据分析
一. # coding:utf8 # !/usr/bin/python # import numpy as np import pandas as pd import np def example2( ...
- ABP之Owin集成
如果在应用程序中同时使用ASP.NET MVC 和 ASP.NET Web API,你需要使用Nuget管理器将Abp.Owin添加到自己的项目中. 安装 使用下面的命令安装: Install-Pac ...
- boost学习目录
Boost之数值转换lexical_cast https://www.cnblogs.com/TianFang/archive/2013/02/05/2892506.html Boost之字符串算法s ...
- IDEA快捷建使用
因为以前使用的IDE工具是Eclipse,所以在公司中都是用IDEA的情况下,换成了IDEA,感觉是好用了很多. 其他快捷键: Ctrl+Shift + Enter,语句完成 “!”,否定完成,输入表 ...
- Asp.net mvc 动作方法中 调用 另一个控制器的动作方法
public ActionResult 动作方法(){ var otherController = DependencyResolver.Current.GetService<另一个控制器的类名 ...
- 分布式唯一ID生成方案是什么样的?(转)
一.前言 分布式系统中我们会对一些数据量大的业务进行分拆,如:用户表,订单表.因为数据量巨大一张表无法承接,就会对其进行分库分表. 但一旦涉及到分库分表,就会引申出分布式系统中唯一主键ID的生成问题, ...
- 全面系统讲解CSS 工作应用+面试一步搞定
- String.Join Method
Overloads Join(String, String[], Int32, Int32) Concatenates the specified elements of a string array ...
- QComboBox使用方法,QComboBox详解
fromComboBox = QComboBox() 添加一个 combobox fromComboBox.addItem(rates) 添加一个下拉选项 fromComboBox.addItems( ...