泡泡一分钟: Deep-LK for Efficient Adaptive Object Tracking
Deep-LK for Efficient Adaptive Object Tracking
"链接:https://pan.baidu.com/s/1Hn-CVgiR7WV0jvaYBv5G_A 提取码:mp97"
用于高效自适应对象跟踪的Deep-LK方法
In this paper, we present a new approach for efficient regression-based object tracking. Our approach is closely related to the Generic Object Tracking Using Re- gression Networks (GOTURN) framework [1]. We make the following contributions. First, we demonstrate that there is a theoretical relationship between Siamese regression networks like GOTURN and the classical Inverse Compositional Lucas & Kanade (IC-LK) algorithm. Further, we demonstrate that unlike GOTURN, IC-LK adapts its regressor to the appearance of the current tracked frame. We argue that the lack of such property in GOTURN attributes to its poor performance on unseen objects and/or viewpoints. Second, we propose a novel framework for object tracking inspired by the IC-LK framework, which we refer to as Deep-LK. Finally, we show impressive results demonstrating that Deep-LK substantially outperforms GOTURN and demonstrate comparable tracking performance against current state-of-the-art deep trackers on high frame-rate sequences whilst being an order of magnitude (100 FPS) computationally efficient.
在本文中,我们提出了一种有效的基于回归的对象跟踪的新方法。 我们的方法与使用回归网络的通用对象跟踪(GOTURN)框架密切相关[1]。我们做出以下贡献。 首先,我们证明了像GOTURN这样的连体回归网络和经典的反向组合Lucas&Kanade(IC-LK)算法之间存在着理论上的关系。此外,我们证明了与GOTURN不同,IC-LK使其回归器适应当前跟踪帧的外观。我们认为GOTURN中缺少这样的属性归因于它在看不见的对象和/或视点上的不良表现。 其次,我们提出了一个新颖的对象跟踪框架,它受IC-LK框架的启发,我们将其称为Deep-LK。
泡泡一分钟: Deep-LK for Efficient Adaptive Object Tracking的更多相关文章
- Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记
Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记 arXiv 摘要:本文提出了一种 DRL 算法进行单目标跟踪 ...
- 论文笔记-Deep Affinity Network for Multiple Object Tracking
作者: ShijieSun, Naveed Akhtar, HuanShengSong, Ajmal Mian, Mubarak Shah 来源: arXiv:1810.11780v1 项目:http ...
- [Box] Robust Training and Initialization of Deep Neural Networks: An Adaptive Basis Viewpoint
目录 概 主要内容 LSGD Box 初始化 Box for Resnet 代码 Cyr E C, Gulian M, Patel R G, et al. Robust Training and In ...
- 论文阅读之:Deep Meta Learning for Real-Time Visual Tracking based on Target-Specific Feature Space
Deep Meta Learning for Real-Time Visual Tracking based on Target-Specific Feature Space 2018-01-04 ...
- Correlation Filter in Visual Tracking系列一:Visual Object Tracking using Adaptive Correlation Filters 论文笔记
Visual Object Tracking using Adaptive Correlation Filters 一文发表于2010的CVPR上,是笔者所知的第一篇将correlation filt ...
- 论文笔记:Visual Object Tracking based on Adaptive Siamese and Motion Estimation Network
Visual Object Tracking based on Adaptive Siamese and Motion Estimation 本文提出一种利用上一帧目标位置坐标,在本帧中找出目标可能出 ...
- 论文笔记:Attentional Correlation Filter Network for Adaptive Visual Tracking
Attentional Correlation Filter Network for Adaptive Visual Tracking CVPR2017 摘要:本文提出一种新的带有注意机制的跟踪框架, ...
- 泡泡一分钟:Robust Attitude Estimation Using an Adaptive Unscented Kalman Filter
张宁 Robust Attitude Estimation Using an Adaptive Unscented Kalman Filter 使用自适应无味卡尔曼滤波器进行姿态估计链接:https: ...
- 泡泡一分钟:Efficient Trajectory Planning for High Speed Flight in Unknown Environments
张宁 Efficient Trajectory Planning for High Speed Flight in Unknown Environments 高效飞行在未知环境中的有效轨迹规划链接: ...
随机推荐
- Coursera, Big Data 3, Integration and Processing (week 1/2/3)
This is the 3rd course in big data specification courses. Data model reivew 1, data model 的特点: Struc ...
- 有序不可变列表tuple
tuple(元组)也是一种有序列表 但是与list不同的是,他是不可变的.一旦初始化就不可以被更改 声明方法 tuple名=(元素1,元素2,元素3--) >>> name=('To ...
- 16、使用limit offset 分页时,为什么越往后翻越慢?如何解决?
在mysql中limit可以实现快速分页,但是如果数据到了几百万时我们的limit必须优化才能有效的合理的实现分页了,否则可能卡死你的服务器哦. 当一个表数据有几百万的数据的时候成了问题! 如 * f ...
- C# - 代码重构
隐藏更多 只暴露集合中供人使用的单一功能,将关于集合的更多功能隐藏掉. 旧版本 public class Animal{ private List<string> LanguageL ...
- 论文笔记系列-Well Begun Is Half Done:Generating High-Quality Seeds for Automatic Image Dataset Construction from Web
MARSGGBO♥原创 2019-3-2
- Django之AJAX
一.预备知识JSON python中的json: json.dumps( ) json.loads( ) JavaScript中的json:JSON.stringify( ) J ...
- Jetty - 教程
Jetty使用教程(一)——开始使用Jetty : https://www.cnblogs.com/yiwangzhibujian/p/5832597.html jetty 的工作原理以及与 Tomc ...
- PostgreSQL快速入门
一.PostgreSQL是什么? PostgreSQL是一个功能强大的开源对象关系数据库管理系统(ORDBMS). 用于安全地存储数据; 支持最佳做法,并允许在处理请求时检索它们. PostgreSQ ...
- 【原创】大叔经验分享(6)Oozie如何查看提交到Yarn上的任务日志
通过oozie job id可以查看流程详细信息,命令如下: oozie job -info 0012077-180830142722522-oozie-hado-W 流程详细信息如下: Job ID ...
- uboot、内核、根文件系统启动流程
[1]Uboot的启动流程 Uboot的启动分为两个阶段. 第一阶段:设置异常向量表,设置ARM核为svc模式,关cache和关mmu, 关看门狗,初始化时钟,串口,内存,初始化栈空间,清bss ...