泡泡一分钟: Deep-LK for Efficient Adaptive Object Tracking
Deep-LK for Efficient Adaptive Object Tracking
"链接:https://pan.baidu.com/s/1Hn-CVgiR7WV0jvaYBv5G_A 提取码:mp97"
用于高效自适应对象跟踪的Deep-LK方法
In this paper, we present a new approach for efficient regression-based object tracking. Our approach is closely related to the Generic Object Tracking Using Re- gression Networks (GOTURN) framework [1]. We make the following contributions. First, we demonstrate that there is a theoretical relationship between Siamese regression networks like GOTURN and the classical Inverse Compositional Lucas & Kanade (IC-LK) algorithm. Further, we demonstrate that unlike GOTURN, IC-LK adapts its regressor to the appearance of the current tracked frame. We argue that the lack of such property in GOTURN attributes to its poor performance on unseen objects and/or viewpoints. Second, we propose a novel framework for object tracking inspired by the IC-LK framework, which we refer to as Deep-LK. Finally, we show impressive results demonstrating that Deep-LK substantially outperforms GOTURN and demonstrate comparable tracking performance against current state-of-the-art deep trackers on high frame-rate sequences whilst being an order of magnitude (100 FPS) computationally efficient.
在本文中,我们提出了一种有效的基于回归的对象跟踪的新方法。 我们的方法与使用回归网络的通用对象跟踪(GOTURN)框架密切相关[1]。我们做出以下贡献。 首先,我们证明了像GOTURN这样的连体回归网络和经典的反向组合Lucas&Kanade(IC-LK)算法之间存在着理论上的关系。此外,我们证明了与GOTURN不同,IC-LK使其回归器适应当前跟踪帧的外观。我们认为GOTURN中缺少这样的属性归因于它在看不见的对象和/或视点上的不良表现。 其次,我们提出了一个新颖的对象跟踪框架,它受IC-LK框架的启发,我们将其称为Deep-LK。
泡泡一分钟: Deep-LK for Efficient Adaptive Object Tracking的更多相关文章
- Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记
Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记 arXiv 摘要:本文提出了一种 DRL 算法进行单目标跟踪 ...
- 论文笔记-Deep Affinity Network for Multiple Object Tracking
作者: ShijieSun, Naveed Akhtar, HuanShengSong, Ajmal Mian, Mubarak Shah 来源: arXiv:1810.11780v1 项目:http ...
- [Box] Robust Training and Initialization of Deep Neural Networks: An Adaptive Basis Viewpoint
目录 概 主要内容 LSGD Box 初始化 Box for Resnet 代码 Cyr E C, Gulian M, Patel R G, et al. Robust Training and In ...
- 论文阅读之:Deep Meta Learning for Real-Time Visual Tracking based on Target-Specific Feature Space
Deep Meta Learning for Real-Time Visual Tracking based on Target-Specific Feature Space 2018-01-04 ...
- Correlation Filter in Visual Tracking系列一:Visual Object Tracking using Adaptive Correlation Filters 论文笔记
Visual Object Tracking using Adaptive Correlation Filters 一文发表于2010的CVPR上,是笔者所知的第一篇将correlation filt ...
- 论文笔记:Visual Object Tracking based on Adaptive Siamese and Motion Estimation Network
Visual Object Tracking based on Adaptive Siamese and Motion Estimation 本文提出一种利用上一帧目标位置坐标,在本帧中找出目标可能出 ...
- 论文笔记:Attentional Correlation Filter Network for Adaptive Visual Tracking
Attentional Correlation Filter Network for Adaptive Visual Tracking CVPR2017 摘要:本文提出一种新的带有注意机制的跟踪框架, ...
- 泡泡一分钟:Robust Attitude Estimation Using an Adaptive Unscented Kalman Filter
张宁 Robust Attitude Estimation Using an Adaptive Unscented Kalman Filter 使用自适应无味卡尔曼滤波器进行姿态估计链接:https: ...
- 泡泡一分钟:Efficient Trajectory Planning for High Speed Flight in Unknown Environments
张宁 Efficient Trajectory Planning for High Speed Flight in Unknown Environments 高效飞行在未知环境中的有效轨迹规划链接: ...
随机推荐
- 第30月第6天 git log
1. git log git log 96a6f18b1e0a1b7301cb4f350537d947afeb22bc -p -1 我们常用 -p 选项展开显示每次提交的内容差异,用 -2 则仅显示最 ...
- input(type="checkbox"|type="radio")+jquery使用
1.用.is(":checked")判断input是否为选中状态 例: var value=$(this).is(":checked"); localStora ...
- Linux进程组调度机制分析【转】
转自:http://oenhan.com/task-group-sched 又碰到一个神奇的进程调度问题,在系统重启过程中,发现系统挂住了,过了30s后才重新复位,真正系统复位的原因是硬件看门狗重启的 ...
- lombok @Getter @Setter 使用注意事项
lombok是一个帮助简化代码的工具,通过注解的形式例如@Setter @Getter,可以替代代码中的getter和setter方法,虽然eclipse自带的setter.getter代码生成也不需 ...
- noj算法 迷宫问题 回溯法
描述: 给一个20×20的迷宫.起点坐标和终点坐标,问从起点是否能到达终点. 输入: 多个测例.输入的第一行是一个整数n,表示测例的个数.接下来是n个测例,每个测例占21行,第一行四个整数x1,y1, ...
- vue-resource post请求后台接口报400(跨域问题解决方法)
1.打开config/index.js,在proxyTable中添写如下代码 proxyTable: { '/api': { //使用"/api"来代替"http://f ...
- Flask简述
Flask是一个基于Python开发并且依赖jinja2模板和Werkzeug WSGI服务的一个微型框架,对于Werkzeug本质是Socket服务端,其用于接收http请求并对请求进行预处理,然后 ...
- CentOS7.6 yum方式安装mysql2.7.25
在CentOS中默认安装有MariaDB,这个是MySQL的分支,但为了需要,还是要在系统中安装MySQL,而且安装完成之后可以直接覆盖掉MariaDB 1 下载并安装MySQL官方的 Yum Rep ...
- sass动态实现颜色平铺显示
@function stripes($position,$colors) { $colors: if(type-of($colors)!='list', compact($colors), $colo ...
- Jrebel最新激活破解方式以及一些必要的配置支持
启动内存配置 jrebel用diea打开的时候,有时需要手动的配置一下jvm内存,项目才能正常启动: 如 VM Options: -Xms256m -Xmx700m -XX:MaxPermSize=2 ...