1.前言
在论坛上看到很多朋友,不知道什么是ESP定律,ESP的适用范围是什么,ESP定律的原理是什么,如何使用ESP定律?看到了我在“”调查结果发现,大家对ESP定律很感兴趣,当然因为实在是太好用了,现在我就来告诉大家什么是ESP定律,它的原理是什么!
BTW:在看完了手动脱壳入门十八篇了以后,再看这篇文章也许会对你更有帮助!
在下面地址下载:
http://www.jetdown.com/down/down.asp?id=37350&no=1
2.准备知识
在我们开始讨论ESP定律之前,我先给你讲解一下一些简单的汇编知识。
1.call
这个命令是访问子程序的一个汇编基本指令。也许你说,这个我早就知道了!别急请继续看完。
call真正的意义是什么呢?我们可以这样来理解:1.向堆栈中压入下一行程序的地址;2.JMP到call的子程序地址处。例如:
00401029 . E8 DA240A00 call 004A3508
0040102E . 5A pop edx
在执行了00401029以后,程序会将0040102E压入堆栈,然后JMP到004A3508地址处!
2.RET
与call对应的就是RET了。对于RET我们可以这样来理解:1.将当前的ESP中指向的地址出栈;2.JMP到这个地址。
这个就完成了一次调用子程序的过程。在这里关键的地方是:如果我们要返回父程序,则当我们在堆栈中进行堆栈的操作的时候,一定要保证在RET这条指令之前,ESP指向的是我们压入栈中的地址。这也就是著名的“堆栈平衡”原理!
3.狭义ESP定律
ESP定律的原理就是“堆栈平衡”原理。
让我们来到程序的入口处看看吧!
1.这个是加了UPX壳的入口时各个寄存器的值!
EAX 00000000
ECX 0012FFB0
EDX 7FFE0304
EBX 7FFDF000
ESP 0012FFC4
EBP 0012FFF0
ESI 77F51778 ntdll.77F51778
EDI 77F517E6 ntdll.77F517E6
EIP 0040EC90 note-upx.<ModuleEntryPoint>
C 0 ES 0023 32bit 0(FFFFFFFF)
P 1 CS 001B 32bit 0(FFFFFFFF)
A 0 SS 0023 32bit 0(FFFFFFFF)
Z 0 DS 0023 32bit 0(FFFFFFFF)
S 1 FS 0038 32bit 7FFDE000(FFF)
T 0 GS 0000 NULL
D 0
O 0 LastErr ERROR_MOD_NOT_FOUND (0000007E)
2.这个是UPX壳JMP到OEP后的寄存器的值!
EAX 00000000
ECX 0012FFB0
EDX 7FFE0304
EBX 7FFDF000
ESP 0012FFC4
EBP 0012FFF0
ESI 77F51778 ntdll.77F51778
EDI 77F517E6 ntdll.77F517E6
EIP 004010CC note-upx.004010CC
C 0 ES 0023 32bit 0(FFFFFFFF)
P 1 CS 001B 32bit 0(FFFFFFFF)
A 0 SS 0023 32bit 0(FFFFFFFF)
Z 1 DS 0023 32bit 0(FFFFFFFF)
S 0 FS 0038 32bit 7FFDE000(FFF)
T 0 GS 0000 NULL
D 0
O 0 LastErr ERROR_MOD_NOT_FOUND (0000007E)
呵呵~是不是除了EIP不同以外,其他都一模一样啊!
为什么会这样呢?
我们来看看UPX的壳的第一行:
0040EC90 n> 60 pushad //****注意这里*****
0040EC91 BE 15B04000 mov esi,note-upx.0040B015
PUSHAD就是把所有寄存器压栈!我们在到壳的最后看看:
0040EE0F 61 popad //****注意这里*****
0040EE10 - E9 B722FFFF jmp note-upx.004010CC //JMP到OEP
POP就是将所有寄存器出栈!
而当我们PUSHAD的时候,ESP将寄存器压入了0012FFC0--0012FFA4的堆栈中!如下:
0012FFA4 77F517E6 返回到 ntdll.77F517E6 来自 ntdll.77F78C4E //EDI
0012FFA8 77F51778 返回到 ntdll.77F51778 来自 ntdll.77F517B5 //ESI
0012FFAC 0012FFF0 //EBP
0012FFB0 0012FFC4 //ESP
0012FFB4 7FFDF000 //EBX
0012FFB8 7FFE0304 //EDX
0012FFBC 0012FFB0 //ECX
0012FFC0 00000000 //EAX
所以这个时候,在教程上面就告诉我们对ESP的0012FFA4下硬件访问断点。也就是说当程序要访问这些堆栈,从而恢复原来寄存器的值,准备跳向苦苦寻觅的OEP的时候,OD帮助我们中断下来。
于是我们停在0040EE10这一行!
总结:我们可以把壳假设为一个子程序,当壳把代码解压前和解压后,他必须要做的是遵循堆栈平衡的原理,让ESP执行到OEP的时候,使ESP=0012FFC4。
4.广义ESP定律
很多人看完了教程就会问:ESP定律是不是就是0012FFA4,ESP定律的适用范围是不是只能是压缩壳!
我的回答是:NO!
看完了上面你就知道你如果用0012FFA8也是可以的,ESP定律不仅用于压缩壳他也可以用于加密壳!!!
首先,告诉你一条经验也是事实---当PE文件运行开始的时候,也就是进入壳的第一行代码的时候。寄存器的值总是上面的那些值,不信你自己去试试!而当到达OEP后,绝大多的程序都第一句都是压栈!(除了BC编写的程序,BC一般是在下面几句压栈)
现在,根据上面的ESP原理,我们知道多数壳在运行到OEP的时候ESP=0012FFC4。这就是说程序的第一句是对0012FFC0进行写入操作!
最后我们得到了广义的ESP定律,对只要在0012FFC0下,硬件写入断点,我们就能停在OEP的第二句处!!
下面我们来举个例子,就脱壳进阶第一篇吧!
载入OD后,来到这里:
0040D042 N> B8 00D04000 mov eax,Notepad.0040D000 //停在这里
0040D047 68 4C584000 push Notepad.0040584C
0040D04C 64:FF35 00000000 push dword ptr fs:[0] //第一次硬件中断,F9
0040D053 64:8925 00000000 mov dword ptr fs:[0],esp
0040D05A 66:9C pushfw
0040D05C 60 pushad
0040D05D 50 push eax
直接对0012FFC0下硬件写入断点,F9运行。(注意硬件中断)
在0040D04C第一次硬件中断,F9继续!
0040D135 A4 movs byte ptr es:[edi],byte ptr ds:[esi] //访问异常,不管他 shift+F9继续
0040D136 33C9 xor ecx,ecx
0040D138 83FB 00 cmp ebx,0
0040D13B ^ 7E A4 jle short Notepad.0040D0E1
第二次硬件中断。
004058B5 64 db 64 //断在这里
004058B6 89 db 89
004058B7 1D db 1D
004058B8 00 db 00
004058B9 00 db 00
这里也不是,F9继续!
004010CC /. 55 push ebp
004010CD |. 8BEC mov ebp,esp //断在这里,哈哈,到了!(如果发现有花指令,用ctrl+A分析一下就能显示出来)
004010CF |. 83EC 44 sub esp,44
004010D2 |. 56 push esi
快吧!还不过瘾,在来一个例子。
脱壳进阶第二篇
如果按上面的方法断不下来,程序直接运行了!没什么,我们在用另一种方法!
载入后停在这里,用插件把OD隐藏!
0040DBD6 N>^\E9 25E4FFFF jmp Note_tEl.0040C000 //停在这里
0040DBDB 0000 add byte ptr ds:[eax],al
0040DBDD 0038 add byte ptr ds:[eax],bh
0040DBDF A4 movs byte ptr es:[edi],byte ptr ds:[esi]
0040DBE0 54 push esp
F9运行,然后用SHIFT+F9跳过异常来到这里:
0040D817 ^\73 DC jnb short Note_tEl.0040D7F5 //到这里
0040D819 CD20 64678F06 vxdcall 68F6764
0040D81F 0000 add byte ptr ds:[eax],al
0040D821 58 pop eax
在这里对0012FFC0下硬件写入断点!(命令行里键入HW 12FFC0)SHIFT+F9跳过异常,就来到OEP的第二行处:(用CTRL+A分析一下)
004010CC /. 55 push ebp
004010CD |. 8BEC mov ebp,esp //断在这里
004010CF |. 83EC 44 sub esp,44
004010D2 |. 56 push esi
004010D3 |. FF15 E4634000 call dword ptr ds:[4063E4]
004010D9 |. 8BF0 mov esi,eax
004010DB |. 8A00 mov al,byte ptr ds:[eax]
004010DD |. 3C 22 cmp al,22
就这样我们轻松搞定了两个加密壳的找OEP问题!
5.总结
现在我们可以轻松的回答一些问题了。
1.ESP定律的原理是什么?
堆栈平衡原理。
2.ESP定律的适用范围是什么?
几乎全部的压缩壳,部分加密壳。只要是在JMP到OEP后,ESP=0012FFC4的壳,理论上我们都可以使用。但是在何时下断点避开校验,何时下断OD才能断下来,这还需要多多总结和多多积累。欢迎你将你的经验和我们分享。
3.是不是只能下断12FFA4的访问断点?
当然不是,那只是ESP定律的一个体现,我们运用的是ESP定律的原理,而不应该是他的具体数值,不能说12FFA4,或者12FFC0就是ESP定律,他们只是ESP定律的一个应用罢了!
4.对于STOLEN CODE我们怎么办?
哈哈,这正是寻找STOLEN CODE最好的办法!当我们断下时,正好断在了壳处理STOLEN CODE的地方,在F8一会就到OEP了!
6.后话
以上的方法原理都是我自己总结,自己的经验,如果有什么不对的地方,有什么没解释清楚的地方。还请海涵!但是如果觉得我很厉害,那就大可不必,因为ESP定律也是别人教我的,不是我第一个提出来的!我只是个比你们早飞一点的菜鸟罢了^-^
看了上面的文字希望能对你在寻找OEP的时候有帮助,但是别忘了一句话:菜鸟认为找OEP很难,高手认为修复才是最难! 好了,下一篇应该写IAT的修复原理了!让我们共同努力吧!

寻找真正的入口(OEP)--广义ESP定律的更多相关文章

  1. 菜鸟脱壳之脱壳的基础知识(四)——利用ESP定律来寻找OEP

    .上节说的是单步跟踪法,这节讲的是利用堆栈平衡(ESP定律)来进行脱壳!想必大家都听说过ESP定律这个大名吧!ESP定律运用的就是堆栈平衡原理!一般的加壳软件在执行时,首先要初始化,保存环境(保存各个 ...

  2. EBP的妙用[无法使用ESP定律时]

    1.了解EBP寄存器 在寄存器里面有很多寄存器虽然他们的功能和使用没有任何的区别,但是在长期的编程和使用 中,在程序员习惯中已经默认的给每个寄存器赋上了特殊的含义,比如:EAX一般用来做返回值,ECX ...

  3. ESP定律脱壳

     ESP定律是比较常用的脱壳方式,作为新手用的也比较多简单写一下我的看法. esp定律的使用过程大致为: 1.开始就点F8,注意观察OD右上角的寄存器中ESP有没突现(变成红色),并且只有sp和ip为 ...

  4. “破解大牛是怎么炼成的”之壳与ESP定律

    文章难易度:★★★ 文章阅读点/知识点:逆向破解 文章作者:Sp4ce 文章来源:i春秋   关键字:网络 信息安全技术 本文参与i春秋社区原创文章奖励计划,未经许可禁止转载! 一.前言 通过前面几篇 ...

  5. 脱壳第一讲,手工脱壳ASPack2.12的壳.ESP定律

    脱壳第一讲,手工脱壳ASPack2.12的壳.ESP定律 一丶什么是ESP定律 首先我们要明白什么是壳.壳的作用就是加密PE的. 而ESP定律就是壳在加密之前,肯定会保存所有寄存器环境,而出来的时候, ...

  6. ESP定律学习

    ESP = 堆栈平衡 ESP定理脱壳: (1)开始就点F8,注意观察OD右上角的寄存器中ESP有没突现(变成红色)(这只是一  般情况下,更确切的说我们选择的ESP值是关键句之后的第一个ESP值) ( ...

  7. ESP定律脱壳——NsPack3.x脱壳

    首先进行查壳,NsPack 将程序拖入x64dbg 程序入口处标志性的push F8单步,发现仅有esp寄存器有变化 在esp上右键,在内存窗口查看,下硬件断点 F9运行程序,程序断在pop之后. 使 ...

  8. [物理学与PDEs]第5章习题4 广义 Hookean 定律的张量的对称性

    设材料是超弹性的, 并设参考构形为自然状态, 证明由线性化得到的张量 ${\bf A}=(a_{ijkl})=\sex{2\cfrac{\p \bar p_{ij}}{c_{kl}}}$ 具有以下的对 ...

  9. 手脱UPX v0.89.6 - v1.02

    声明: 只为纪录自己的脱壳历程,高手勿喷 这个壳的脱法很多一般都一步直达的,步过我喜欢ESP定律 1.载入OD,在入口下一行ESP定律运行一次 > pushad ; //入口 BE mov es ...

随机推荐

  1. ajax向Django前后端提交请求和CSRF跨站请求伪造

    1.ajax登录示例 urls.py from django.conf.urls import url from django.contrib import admin from app01 impo ...

  2. Centos 05 系统目录讲解

    本节内容 1.linux目录结构 2.主目录功能简介 3.重要子目录 linux目录结构 在linux里面,逻辑上所有目录只有一个顶点,根是所有目录的起点. 根下面是类似一个倒挂的树一样的层次结构 可 ...

  3. C++设计模式——模板方法模式

    模板方法模式 在GOF的<设计模式:可复用面向对象软件的基础>一书中对模板方法模式是这样说的:定义一个操作中的算法骨架,而将一些步骤延迟到子类中.TemplateMethod使得子类可以不 ...

  4. 【原创】大叔问题定位分享(16)spark写数据到hive外部表报错ClassCastException: org.apache.hadoop.hive.hbase.HiveHBaseTableOutputFormat cannot be cast to org.apache.hadoop.hive.ql.io.HiveOutputFormat

    spark 2.1.1 spark在写数据到hive外部表(底层数据在hbase中)时会报错 Caused by: java.lang.ClassCastException: org.apache.h ...

  5. 八.nginx网站服务实践应用

    期中集群架构-第八章-期中架构nginx章节====================================================================== 01. web ...

  6. Windows Internals 笔记——线程

    1.进程有两个组成部分,一个进程内核对象和一个地址空间.线程也有两个组成部分: 一个是线程的内核对象,操作系统用它管理线程.系统还用内核对象来存放线程统计信息的地方. 一个线程栈,用于维护线程执行时所 ...

  7. python全栈开发day110-Flask基础语法

    1.Flask 初识: 短小精悍,三方支持的组件多 稳定性较差 2.三行 :启动flask服务 from flask import Flask app = Flask(__name__) app.ru ...

  8. Linux下如何查看系统启动时间和运行时间以及安装时间

    1.uptime命令输出:16:11:40 up 59 days, 4:21, 2 users, load average: 0.00, 0.01, 0.00 2.查看/proc/uptime文件计算 ...

  9. git操作笔记《二》:github更新缓慢问题的解决办法

    从GitHub上拉取代码速度十分之慢,百度了一下,说是github的某些域名的dns解析被污染了. 解决方法: 方案一:可以花钱购买VPN服务,但是这对于学生党来说是不划算的. vpn 方案二:绕过d ...

  10. Innodb与Myisam引擎的区别与应用场景

    1. 区别: (1)事务处理: MyISAM是非事务安全型的,而InnoDB是事务安全型的(支持事务处理等高级处理): (2)锁机制不同: MyISAM是表级锁,而InnoDB是行级锁: (3)sel ...