如何追踪产生大量REDO的来源
从10点到12点数据库中对象块变化排名靠前的对象
select to_char(begin_interval_time,'YYYY_MM_DD HH24:MI') snap_time,
dhsso.object_name,
sum(db_block_changes_delta)
from dba_hist_seg_stat dhss,
dba_hist_seg_stat_obj dhsso,
dba_hist_snapshot dhs
where dhs.snap_id = dhss.snap_id
and dhs.instance_number = dhss.instance_number
and dhss.obj# = dhsso.obj#
and dhss.dataobj# = dhsso.dataobj#
and begin_interval_time between
to_date('2018_12_25 10','YYYY_MM_DD HH24') and
to_date('2018_12_25 13','YYYY_MM_DD HH24')
GROUP BY to_char(begin_interval_time,'YYYY_MM_DD HH24:MI'),
dhsso.object_name
order by 3 desc;
ZQF_LYJ_D42_USR这张表最近几个snap间隔的变化量
select to_char(begin_interval_time,'YYYY_MM_DD HH24:MI') snap_time,
sum(db_block_changes_delta)
from dba_hist_seg_stat dhss,
dba_hist_seg_stat_obj dhsso,
dba_hist_snapshot dhs
where dhs.snap_id = dhss.snap_id
and dhs.instance_number = dhss.instance_number
and dhss.obj# = dhsso.obj#
and dhss.dataobj# = dhsso.dataobj#
and dhsso.object_name = 'ZQF_LYJ_D42_USR'
GROUP BY to_char(begin_interval_time,'YYYY_MM_DD HH24:MI');
历史SQL中关于ZQF_LYJ_D42_USR
select to_char(begin_interval_time,'YYYY_MM_DD HH24'),
dbms_lob.substr(sql_text,4000,1),
dhss.instance_number,
dhss.sql_id,
executions_delta,
dhss.rows_processed_delta
from dba_hist_sqlstat dhss,dba_hist_snapshot dhs,dba_hist_sqltext dhst
where upper(dhst.sql_text) like '%ZQF_LYJ_D42_USR%'
and dhss.snap_id = dhs.snap_id
and dhss.instance_number = dhs.instance_number
and begin_interval_time between
to_date('2018_12_25 10','YYYY_MM_DD HH24') and
to_date('2018_12_25 13','YYYY_MM_DD HH24')
and dhss.sql_id=dhst.sql_id;
SQL: How to Find Sessions Generating Lots of Redo or Archive logs (文档 ID 167492.1)
***Checked for relevance on 13-Oct-2015***
goal: How to find sessions generating lots of redo
fact: Oracle Server - Enterprise Edition 8
fact: Oracle Server - Enterprise Edition 9
fact: Oracle Server - Enterprise Edition 10
fix:
To find sessions generating lots of redo, you can use either of the following
methods. Both methods examine the amount of undo generated. When a transaction
generates undo, it will automatically generate redo as well.
The methods are:
1) Query V$SESS_IO. This view contains the column BLOCK_CHANGES which indicates
how much blocks have been changed by the session. High values indicate a
session generating lots of redo.
The query you can use is:
SQL> SELECT s.sid, s.serial#, s.username, s.program,
i.block_changes
FROM v$session s, v$sess_io i
WHERE s.sid = i.sid
ORDER BY 5 desc, 1, 2, 3, 4;
Run the query multiple times and examine the delta between each occurrence
of BLOCK_CHANGES. Large deltas indicate high redo generation by the session.
2) Query V$TRANSACTION. This view contains information about the amount of
undo blocks and undo records accessed by the transaction (as found in the
USED_UBLK and USED_UREC columns).
The query you can use is:
SQL> SELECT s.sid, s.serial#, s.username, s.program,
2 t.used_ublk, t.used_urec
3 FROM v$session s, v$transaction t
4 WHERE s.taddr = t.addr
5 ORDER BY 5 desc, 6 desc, 1, 2, 3, 4;
Run the query multiple times and examine the delta between each occurrence
of USED_UBLK and USED_UREC. Large deltas indicate high redo generation by
the session.
You use the first query when you need to check for programs generating lots of
redo when these programs activate more than one transaction. The latter query
can be used to find out which particular transactions are generating redo.
How To Determine The Cause Of Lots Of Redo Generation Using LogMiner (文档 ID 300395.1)
APPLIES TO:
Oracle Database - Enterprise Edition - Version 8.1.7.4 to 10.2.0.5 [Release 8.1.7 to 10.2]
Oracle Database - Enterprise Edition - Version 11.2.0.1 and later
Information in this document applies to any platform.
GOAL
This article provides guidelines DBAs can use to determine which OPERATION codes are generating lots of redo information.
This article is intended for DBAs. The article assumes the reader is familiar with LogMiner and has basic skills in mining redo logs.
SOLUTION
--- How to determine the cause of lots of redo generation using LogMiner ---
Using OPERATION Codes to Understand Redo Information
There are multiple operation codes which can generate the redo information, using following guide lines you can identify the operation codes which are causing the high redo generation and you need to take an appropriate action on it to reduce the high redo generation.
NOTE:
Redo records are not all equally sized. So remember that just because certain statements show up a lot in the LogMiner output, this does not guarantee that you have found the area of functionality generating the excessive redo.
What are these OPERATION codes ?
INSERT / UPDATE / DELETE -- Operations are performed on SYS objects are also considered as an Internal Operations.
COMMIT -- This is also "Internal" operation, you will get line "commit;" in the column sql_redo.
START -- This is also "Internal" operation, you will get line "set transaction read write;" in sql_redo INTERNAL -- Dictionary updates
SELECT_FOR_UPDATE - This is also an Internal operation and oracle generates the redo information for "select" statements which has "for update" clause.
In general INTERNAL operations are not relevant, so to query the relevant data, use "seg_owner=' in the "where" clause.
Examples :
How to extract relevant information from the view v$logmnr_contents?
1. This SQL lists operations performed by user SCOTT
SQL> select distinct operation,username,seg_owner from v$logmnr_contents where seg_owner='SCOTT';
OPERATION USERNAME SEG_OWNER
-------------------------- ------------------------- ---------------------
DDL SCOTT SCOTT
DELETE SCOTT SCOTT
INSERT SCOTT SCOTT
UPDATE SCOTT SCOTT
2. This SQL lists the undo and redo associated with operations that user SCOTT performed
SQL> select seg_owner,operation,sql_redo,sql_undo from v$logmnr_contents where SEG_owner='SCOTT';
SCOTT DDL
create table LM1 (c1 number, c2 varchar2(10));
SCOTT INSERT
insert into "SCOTT"."LM1"("C1","C2") values ('101','AAAA');
delete from "SCOTT"."LM1" where "C1" = '101' and "C2" = 'AAAA'
and ROWID = 'AAAHfBAABAAAMUqAAA';
SCOTT UPDATE update "SCOTT"."LM1" set "C2" = 'YYY'
where "C2" = 'EEE' and ROWID = 'AAAHfBAABAAAMUqAAE';
update "SCOTT"."LM1" set "C2" = 'EEE' where "C2" = 'YYY'
and ROWID = 'AAAHfBAABAAAMUqAAE';
INSERT / UPDATE / DELETE -- Operations are performed on SYS objects are also considered as an Internal Operations.
3. This SQL lists undo and redo genereated for UPDATE statements issues by user SCOTT
SQL> select username, seg_owner,operation,sql_redo,sql_undo from v$logmnr_contents where operation ='UPDATE' and USERNAME='SCOTT';
UNAME SEG_OW OPERATION SQL_REDO SQL_UNDO
---------- ---------- ------------ -----------------------------------
SCOTT SYS UPDATE update "SYS"."OBJ$" set "OBJ#" = '1'..... update ....
SCOTT SYS UPDATE update "SYS"."TSQ$" set "GRANTO..... update .......
SCOTT SYS UPDATE update "SYS"."SEG$" set "TYPE#" = '5'.. update......
As per above result user SCOTT has updated SYS objects so, if you query on USERNAME, you may get incorrect result. So, better to query v$logmnr_contents on SEG_OWNER.
4. Identifying Operation Counts
Run the following query to see the OPERATION code row count from v$logmnr_contents, to understand which OPERATION code has generated lots of redo information.
SQL> select operation,count(*) from v$logmnr_contents group by operation;
OPERATION COUNT(*)
-------------------- ----------
COMMIT 22236
DDL 2
DELETE 1
INSERT 11
INTERNAL 11
SELECT_FOR_UPDATE 32487
START 22236
UPDATE 480
8 rows selected
5. Identifying User Counts
Run the following query to check user activity and operation counts:
SQL> select seg_owner,operation,count(*) from v$logmnr_contents group by seg_owner,operation;
SEG_OWNER OPERATION COUNT(*)
-------------------- ---------------- ---------
SCOTT COMMIT 22236
SCOTT DDL 2
SCOTT DELETE 1
...
BILLY COMMIT 12899
BILLY DDL 5
BILLY DELETE 2
...
NOTE:
Be aware of next known issue:
If you are not using "select for update" statements often in your application and yet find a high operation count for operation code "SELECT_FOR_UPDATE" then you might be hitting a known issue.
To confirm this check whether SQL_REDO shows select,update statements on AQ$_QUEUE_TABLE_AFFINITIES and AQ$_QUEUE_TABLES.
If you see these selects and updates, then check the value of the Init.ora parameter AQ_TM_PROCESSES. The default value is AQ_TM_PROCESSES = 0 meaning that the queue monitor is not created.
If you are not using Advanced Queuing, then set AQ_TM_PROCESSES back to zero to avoid lots of redo generation on objects AQ$_QUEUE_TABLE_AFFINITIES and AQ$_QUEUE_TABLES.
如何追踪产生大量REDO的来源的更多相关文章
- 【恢复,1】 redo 日志恢复的各种情况
Recovering After the Loss of Online Redo Log Files If a media failure has affected the online redo l ...
- 怎么知道RTL Schematic中的instance与哪段代码对应呢
2013-06-23 20:15:47 ISE综合后可以看到RTL Schematic,但我们知道在RTL编码时,要经常问自己一个问题“我写的这段代码会综合成什么样的电路呢”.对于一个简单的设计,比如 ...
- CVE-2010-2883Adobe Reader和Acrobat CoolType.dll栈缓冲区溢出漏洞分析
Adobe Acrobat和Reader都是美国Adobe公司开发的非常流行的PDF文件阅读器. 基于Window和Mac OS X的Adobe Reader和Acrobat 9.4之前的9.x ...
- UAVStack的慢SQL数据库监控功能及其实现
UAVStack是一个全维监控与应用运维平台.UAV.Monitor具备监控功能,包含基础监控.应用/服务性能监控.日志监控.业务监控等.在应用监控中,UAV可以根据应用实例画像:其中应用实例组件可以 ...
- 通过代码审计找出网站中的XSS漏洞实战(三)
一.背景 笔者此前录制了一套XSS的视频教程,在漏洞案例一节中讲解手工挖掘.工具挖掘.代码审计三部分内容,准备将内容用文章的形式再次写一此,前两篇已经写完,内容有一些关联性,其中手工XSS挖掘篇地址为 ...
- 【Web开发】到底什么是短链接
目录 什么是短链接 为什么使用短链接 节省发送的内容 提升用户体验 便于链接追踪,分析点击来源 一定程度上保护原始网站链接 短链接生成平台 短链接生成原理 参考 今天无意中看到一个名词--" ...
- Hadoop-No.11之元数据
元数据的重要性 三个重要理由,让我们不得不在意元数据 元数据允许用户通过一张表的高一级逻辑抽象,而不是HDFS中文件的简单几何,或者HBase中的表来与数据交互.这意味着用户不比关心数据是如何存储的, ...
- iOS 中的 Deferred Deep Linking(延迟深度链接)
http://www.cocoachina.com/ios/20160105/14871.html Deep Linking 其实 deep linking 并不是一个新名词,在 web 开发领域,区 ...
- dubbo 2.7应用级服务发现踩坑小记
本文已收录 https://github.com/lkxiaolou/lkxiaolou 欢迎star. 背景 本文记录最近一位读者反馈的dubbo 2.7.x中应用级服务发现的问题,关于dubbo应 ...
随机推荐
- 一个基于Net 的CMS -- Umbraco CMS
一个基于Net 的CMS -- Umbraco CMS: https://umbraco.com/ Sitecore 和 EPiServer http://www.bubuko.com/i ...
- ubuntu 16.04扩充root 分区
ubuntu使用过程中,提示root分区剩余空间不足,剩余200多M时还可以进行一些操作,剩余几M时拷贝等命令都不能够执行. 扩充root分区步骤如下: 1.查看root分区所在位置: 命令: sud ...
- tp5的phpword使用
1.使用composer安装phpoffice/phpword phpword的使用文档:https://phpword.readthedocs.io/en/latest/index.html 2.使 ...
- ARKit1.5 采坑
1.对应的生成的预制体,0.1的大小按照Cube的实际大小进行缩放. Plane和Cube都是0.1的情况下是不一样的大小的.
- java----SAX解析XML
XML: 可扩展标记语言 1.充当显示数据 2.储存数据 3.传输数据 SAX: 水电费 基于事假驱动,顺序读写,速度快 不能任意读取节点,灵活性差 解析时,占用内存小 import org.xml. ...
- Java Spring Boot VS .NetCore (七) 配置文件
Java Spring Boot VS .NetCore (一)来一个简单的 Hello World Java Spring Boot VS .NetCore (二)实现一个过滤器Filter Jav ...
- kth min_max容斥
题解: 普通的$min-max$容斥是用来求最后出现元素的期望之类的 $kth min-max$容斥进一步解决倒数第k个出现的元素的期望 给出公式: $kthmax(S)=\sum\limits_{T ...
- Win下必备神器之Cmder
诚言,对于开发码字者,Mac和Linux果断要比Windows更贴心;但只要折腾下,Windows下也是有不少利器的.之前就有在Windows下效率必备软件一文中对此做了下记载:其虽没oh-my-zs ...
- 几个简单排序算法的Python实现
一,冒泡排序 冒泡排序我就不多讲了,大体上就是比较相邻的两个数,每次把较大的数沉底.流程图大致上如下: 图是截得别人的,只是说明一下,代码没有参看别人的,写的不好,有更好的写法可以一起探讨.下面是代码 ...
- (60)Wangdao.com第十天_JavaScript 函数_作用域_闭包_IIFE_回调函数_eval
函数 实现特定功能的 n 条语句封装体. 1. 创建一个函数对象 var myFunc = new Function(); // typeof myFunc 将会打印 function ...