转自:http://bbs.pinggu.org/thread-3078817-1-1.html

有人说Python和R的区别是显而易见的,因为R是针对统计的,python是给程序员设计的,其实这话对Python多多少少有些不公平。2012年的时候我们说R是学术界的主流,但是现在Python正在慢慢取代R在学术界的地位。不知道是不是因为大数据时代的到来。

Python与R相比速度要快。Python可以直接处理上G的数据;R不行,R分析数据时需要先通过数据库把大数据转化为小数据(通过groupby)才能交给R做分析,因此R不可能直接分析行为详单,只能分析统计结果。所以有人说:Python=R+SQL/Hive,并不是没有道理的。

Python的一个最明显的优势在于其胶水语言的特性,很多书里也都会提到这一点,一些底层用C写的算法封装在Python包里后性能非常高效(Python的数据挖掘包Orange canve 中的决策树分析50万用户10秒出结果,用R几个小时也出不来,8G内存全部占满)。但是,凡事都不绝对,如果R矢量化编程做得好的话(有点小难度),会使R的速度和程序的长度都有显著性提升。

R的优势在于有包罗万象的统计函数可以调用,特别是在时间序列分析方面,无论是经典还是前沿的方法都有相应的包直接使用。
      相比之下,Python之前在这方面贫乏不少。但是,现在Python有了pandas。pandas提供了一组标准的时间序列处理工具和数据算法。因此,你可以高效处理非常大的时间序列,轻松地进行切片/切块、聚合、对定期/不定期的时间序列进行重采样等。可能你已经猜到了,这些工具中大部分都对金融和经济数据尤为有用,但你当然也可以用它们来分析服务器日志数据。于是,近年来,由于Python有不断改良的库(主要是pandas),使其成为数据处理任务的一大替代方案。

做过几个实验:
1. 用python实现了一个统计方法,其中用到了ctypes,multiprocess。
之后一个项目要做方法比较,又用回R,发现一些bioconductor上的包已经默认用parallel了。(但那个包还是很慢,一下子把所有线程都用掉了,导致整个电脑使用不能,看网页非常卡~)
2. 用python pandas做了一些数据整理工作,类似数据库,两三个表来回查、匹配。感觉还是很方便的。虽然这些工作R也能做,但估计会慢点,毕竟几十万行的条目了。
3. 用python matplotlib画图。pyplot作图的方式和R差异很大,R是一条命令画点东西,pylot是准备好了以后一起出来。pyplot的颜色选择有点尴尬,默认颜色比较少,之后可用html的颜色,但是名字太长了~。pyplot 的legend比R 好用多了,算是半自动化了。pyplot画出来后可以自由拉升缩放,然后再保存为图片,这点比R好用。

总的来说Python是一套比较平衡的语言,各方面都可以,无论是对其他语言的调用,和数据源的连接、读取,对系统的操作,还是正则表达和文字处理,Python都有着明显优势。   而R是在统计方面比较突出。但是数据分析其实不仅仅是统计,前期的数据收集,数据处理,数据抽样,数据聚类,以及比较复杂的数据挖掘算法,数据建模等等这些任务,只要是100M以上的数据,R都很难胜任,但是Python却基本胜任。

结合其在通用编程方面的强大实力,我们完全可以只使用Python这一种语言去构建以数据为中心的应用程序。
      但世上本没有最好的软件或程序,也鲜有人能把单一语言挖掘运用到极致。尤其是很多人早先学了R,现在完全不用又舍不得,所以对于想要学以致用的人来说,如果能把R和Python相结合,就更好不过了,很早看过一篇文章——让R与Python共舞,咱们坛子里有原帖,就不多说了,看完会有更多启发。

BTW: 如果之前没有学过R,可以先学Python然后决定是不是学R,如果学了R,学Python的时候会更快上手。

Python与R的区别和联系的更多相关文章

  1. Python中%r和%s的详解及区别_python_脚本之家

    Python中%r和%s的详解及区别_python_脚本之家 https://www.jb51.net/article/108589.htm

  2. 10 种机器学习算法的要点(附 Python 和 R 代码)

    本文由 伯乐在线 - Agatha 翻译,唐尤华 校稿.未经许可,禁止转载!英文出处:SUNIL RAY.欢迎加入翻译组. 前言 谷歌董事长施密特曾说过:虽然谷歌的无人驾驶汽车和机器人受到了许多媒体关 ...

  3. Python调用R语言

    网络上经常看到有人问数据分析是学习Python好还是R语言好,还有一些争论Python好还是R好的文章.每次看到这样的文章我都会想到李舰和肖凯的<数据科学中的R语言>,书中一直强调,工具不 ...

  4. Python与R的争锋:大数据初学者该怎样选?

    在当下,人工智能的浪潮席卷而来.从AlphaGo.无人驾驶技术.人脸识别.语音对话,到商城推荐系统,金融业的风控,量化运营.用户洞察.企业征信.智能投顾等,人工智能的应用广泛渗透到各行各业,也让数据科 ...

  5. (数据科学学习手札29)KNN分类的原理详解&Python与R实现

    一.简介 KNN(k-nearst neighbors,KNN)作为机器学习算法中的一种非常基本的算法,也正是因为其原理简单,被广泛应用于电影/音乐推荐等方面,即有些时候我们很难去建立确切的模型来描述 ...

  6. (转)利用Auto ARIMA构建高性能时间序列模型(附Python和R代码)

    转自:  原文标题:Build High Performance Time Series Models using Auto ARIMA in Python and R 作者:AISHWARYA SI ...

  7. Python 和 R 数据分析/挖掘工具互查

    如果大家已经熟悉python和R的模块/包载入方式,那下面的表查找起来相对方便.python在下表中以模块.的方式引用,部分模块并非原生模块,请使用 pip install * 安装:同理,为了方便索 ...

  8. 深入对比数据科学工具箱:Python和R之争

    建议:如果只是处理(小)数据的,用R.结果更可靠,速度可以接受,上手方便,多有现成的命令.程序可以用.要自己搞个算法.处理大数据.计算量大的,用python.开发效率高,一切尽在掌握. 概述 在真实的 ...

  9. Error : Must specify a primary resource (JAR or python or R file)

    spark-submit 报错:must specify resource 取消关注 | 1 ... 我的submit.sh内容: /bin/spark-submit \ --class abc.pa ...

随机推荐

  1. springdata jpa 原始sql的使用

  2. Html | Vue | Element UI——引入使用

    前言 做个项目,需要一个效果刚好Element UI有,就想配合Vue和Element UI,放在tp5.1下使用,但是引入在线的地址各种报错,本地引入就完美的解决了问题! 代码 __STATIC_J ...

  3. Codeforces Round #551 (Div. 2) 题解

    CF1153A 直接做啊,分类讨论即可 #include<iostream> #include<string.h> #include<string> #includ ...

  4. mongoDB 文档操作_改

    mongoDB 更改操作 格式对比 MySQL update table set .... where .... db.collection.updateOne(query,update,upsert ...

  5. mongoDB 大文件存储方案, JS 支持展示

    文件存储 方式分类 传统方式 存储路径 仅存储文件路径, 本质为 字符串 优点: 节省空间 缺点: 不真实存储在数据库, 文件或者数据库发送变动需要修改数据库 存储文件本身 将文件转换成 二进制 存储 ...

  6. centos6/7安装java和maven

    下载安装包并解压到相关目录即可 编辑环境变量vim /etc/profile.d/maven.sh export JAVA_HOME=/app/soft/java-1.8.0_181 export J ...

  7. Androidstudio 使用git插件提交代码

    1.androidstudio中的项目已经推送到git仓库上(与仓库已经建立了联系) 参见: 2.右键目录--git---commit directory : 3.填写相应的commit Messig ...

  8. ubuntu14.04 网络配置

    流程分析: 在Ubuntu系统网络设备启动的流程中,会依赖/etc/network/interface的配置文件初始化网络接口,所以直接在/etc/network/interface之中配置好对应的d ...

  9. js介绍,js三种引入方式,js选择器,js四种调试方式,js操作页面文档DOM(修改文本,修改css样式,修改属性)

    js介绍 js运行编写在浏览器上的脚本语言(外挂,具有逻辑性) 脚本语言:运行在浏览器上的独立的代码块(具有逻辑性) 操作BOM 浏览器对象盒子 操作DOM 文本对象 js三种引入方式 (1)行间式: ...

  10. 第十五节:HttpContext五大核心对象的使用(Request、Response、Application、Server、Session)

    一. 基本认识 1. 简介:HttpContext用于保持单个用户.单个请求的数据,并且数据只在该请求期间保持: 也可以用于保持需要在不同的HttpModules和HttpHandlers之间传递的值 ...