网址:http://www.fusioncharts.com/dev/chart-guide/heat-map-chart/introduction.html

以下只是假数据,目前还没有实现动态数据获取,哪位大神可以帮助我,那便是赶集不尽了。

注:HTML我是嵌套的,所以没有头文件,各位用的时候可以自己加

图表展示

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAkUAAAEqCAIAAACUVrOEAAAgAElEQVR4nO2d74/cVJ6v9+8IO8kQEhLIMGzyZQHnh7wQuqehSwgKIVQz21OjAIWSMYmmFaGtgai5DVZaK19GaalfwN7BUZSKcoO5rBxputD0VcGsihdQ2tx4XsR3h6iuOiqhrHWVqLT0tTK7e+4L/yi7yq6urtPdbrs+jz5SOnbZfeq0fZ46x8flv2AAAABA+vmLpAsAAAAArAPwGQAAgCwAnwEAAMgC8BkAAIAsAJ8BAADIAvAZAACALACfAQAAyALwGQAAgCwAnwEAAMgC8BkAAIAsAJ8BAADIAvAZAACALACfAQAAyALwGQAAgCwAnwEAAMgC8BkAAIAsAJ8BAADIAvAZAACALACfAQAAyALwGQAAgCwAnwEAAMgC8BkAAIAsAJ8BAADIAvAZABuHpUsUhWKs0/6rkhCzO0Pp/kVOYSTd8hbYplYuikREYn5abVi9O3G2a1TKxXHBfZ1SNduRv6Jt6rJcteJ+OwAbDnwGwMaxsT5r6ZIQu7tVfdaulYVQofKq2ed3BF+oGHb0Ow3IEoBNBz4DYBPoau6tRsXpGQnjRVn3OzyuhGYqulwUiYRxqWK043bZ1Ir99Liaz9q1MhEVKiZjjLU0iYhyPUJraUUiEiTNKaLdqst5IqKi1gr+ipC2Jd3q6boZlem8SERiUdabvgv9xU41NHskCcCagM8A2ASCLrENJd/V4Zl3OzyOBkJEd3lsYz5PVNS02HG91Xxm12UiEgozmtGKE0lTKxDRdDXgVLuulNR6sx36Ff19Zqr5rnfUYoyxdm0m3PMT5AaMBniAzwDYBAIucfo8ebluMcaYVZNzHcs4GsgrjTZjrN1Q8kRU0Jrde7MNJU+CpLf6XKdadbzRUaKrknEpcF0svI+I3x/xK7p23lllN2SBqDBvtBljdlOTvH6gs0W5ihFKsF7AZwBsAp3m3hnnKzl9FMa8TpBjhS6BBFd1sBtKjgSparF+8y4GmA/C2qYzsOl1E7vHGw2FokYho35FrM+iLiE6L/MuzQnjhVJ5XjcgNsAJfAbAJtBp7p1xvn4+6wgk0mfRc0x6hiV7fdbSS0RUrvV0w9rNhjaTJyJhPvyrIsYbmaH6Xbmhfea/e7tlVjV5uuBcRXOuygEwLPAZAJvAauONrjMcDeTkmsVixxsH9JnzMn8qh7c3T1mOVt3fxJhVnY7wWex8kHylyaJ85osqMN5Yl4moqMZPbGGMMbNSiHoTAKwF+AyATSA0H6Qud02B7zMfxB1XjKPPfV498/GJgkOKtqHkulfO987Db2rF2Pn6wV/uDKMSud3LwKrgdTqHotZkvdNE0D8DvMBnAGwCUfP1x4WY+fqyVvXn65v9p/z1v2/ZaqjTBedO6O7f5K12Rvr63lA92P3UtlkpOVPytWZ3uTq/SCyWNb+nFihe3xu6ARgM+AyArQO+VgOA4YHPANg6wGcADA98BsDWAT4DYHjgMwAAAFkAPgMAAJAF4DMAAABZAD4DAACQBeAzkG0sq+/3UiTNFi8eAGkCPgND4nxv+tb+SgerKm3lyYIbWTzbUErud4G0ajMFgcSi6n37R+Q3ZjkFaWqSEvPUFkPJ8MzLQHUxq6FK40LvTd6tmuzcVi6MF8uVnru/W3rXX9Nueo+xG+Thbj2b+7upy0JnTZ8/EIDPwJC0q9M0I8tC/LevbwGsuDZia7BxxbON+YJctxljzK7LktZijDUrkvu36vd7bUPJu1uODoHqYqaaFyRHP22zIvmf2Fpa0f8eS6taFoRgDdpNbVoM32nRrpWFwIN/+j7cLWJzf1VDyYXWjOQfaFDgMzAULa0oyA3bVHOdE9VUc0G7uS9hnQ+qJIxLSt3r0BkKKXp1WiQSZupt91Xjgv/dTP4n2lbN+/YnVZ8vBR7gFblbn04vxN0ithhSpe59ki7rTcusSOMCkViUa63ga7SyuzjwYXv4t9ZVvFDvx9KlwBPRQrta7V17Ve93nNfoM8ZaWrHnwTFuSZytDIWkStWppLiv5AqUMlhfMYWP+dMPsJNO/ymuVDE7iasuYz74Ec2uy+4fwqpKpDT8TUw1531PdNtQS6JQVNWZoHasqhR4lIGh9H7Xs0v05t7vN+aLitK1Ju4PBOAzMBS+x0w113meiKEE2oKWViS5bjPW0iXR/2Bbl/OC++nSUIhySqPNmG07Tyt2P866T8Zyv4jX+bzcYoy1TU0SfDvF7TZIsOHuVwz3A7nzYDFx2vltDSVHgdd4T9m06nJecFsqzrcWLF4fnwV2NdC7Dja2jMWMN/bpF1q6JESsDvrM/8r9li5FddGblbwg1/y+jPuKmMLH1U/0Tqyq5L3abuqS4H2JckyponfSr7pCVVGV3MKEPccs3ddV26g1Wnaf8Vi7VZNzUd/1zFbb3FQLct3uWRPzBwLwGRgCu9EZZ2xpxc5FtIDQfJ11tRZ2XXYbAkOh4CfeEH6DbjdkIbC5qebchj52t927cU/8wYphKNRpKRpKQCqB8aJ2ddrZlu+tDe6zzq4GetdNrRDXGejsPkz4QS2mmovYQchnfpECRQ2/NucZKrjb1Qsf2GHcToJDd02tEFXnq+wkRJ/qamrFwEeU0Nvs/n+Mzyx9Op8XKS/XWqsMEfZu3tRK5Vo7ak30HwjAZ2DttKvTgYdytbRi5wmUvtB8nUXNPXA27j1N202jqs3Pu893lHSrpyvht1Pxuw3S2XrAYoRaKSPos2Dj5W7C+dbW4LPg8lXfdWeMLI7Vrtt1eiVBwj6LKGqQljNEOi7JWtV0mvK+hY+sn4idtGvlGK/ElSpiJ4NVl20oee/JOEP7zN1VsyKt8uCfns09m0XtOPoPBOAzsGacZzyG8T8yu0JragV3rC6mvWPdp6ltzOeFcUmu6HWjaTU1aXWfrf70x7DPBijGwD4T5g3etzakz1Z916u/aNV5KL2NNVujzxjzHj4tjQskztTa8a+MrZ+InazdZxE76amM3mLZTU0Spc5DxKPGG7uM0nf+p1fuoNTDLw5v3tIlf/cRO478AwH4DKyV0BUzxpg7c99bZChCTtV9nTFmKEL03K7QaWrX5c7DjZ1hpP7jjbG7DRJouAcrRrzPAhcs/PFGvrfWx2eB14Qbs0He9ZbonwVpVgo0XbXiCh9fP1E76T/euEqpvJ10//rwS+2mNi3mZ2qhuTbtWpkC1yqbWqH7Ulz4L2WqueA1rvD0kChW7YgHCon+WQzwGVgTdkMWckr3pW1TzfkX0QxFEAQhcPI2tSLl5bozxbBVl/PupfGIltq7wK4WBX8sqnc+iHMix+02iKVLNOM2QgMVI95n/lwDK/CrON9asHiWLvkzTmpyXoj22UDvuqkV+ne/VvNZ10TVTnUM6jO7IYdneDgHR0zhY+onZif95oP0lipmJ/HVZRtKnvIRV9wsXerM16/JuZ4ZGb1/Kf/Cnd3UpHzPWdN3875rov9AAD4Da6JdnY68hbqlFb1G2rnPOvRZtG1o5aLzeOLAHapdp6ltenOti2XNaKh5/+NwZ75+pVopdbaJ3m0Iqxq4r2eAYvTx2YxakcaF7lnyfG8tVLzA2zTrSozPBnrXfSbsObXCP79xtZ6QbXqlDE2qjy58XP3E7MSfgR+qgLhSxewkprqsam/HqPMA7sDTvHvvUoj4S7kbDPTw7TX4DPMb44DPQJpYderexpC2r8ZoacXhP7+3tGKxnw2zB1d1bT6j9wcaGPgMbG2MeUEou5cKrH738WxoIVLmM44vkRjJr59I05tOU1k3HfgMbHFsUyt7X5sXPV608aTOZ+EvJFwDTa00ko3lkNW1+YzqH2gw4DMAAABZAD4DAACQBeAzAAAAWQA+AwAAkAXgMwAAAFkAPgMAAJAF4DMAAABZAD4DAACQBeCzxDgCOCCiw4cPJ12KtEJEBw8eTLoUaYWIBEFIuhTpZoMaVfgsMY4cOfLm5e3IcCGi5cltyHA59Nj+lSVChgtR8mVIdQ4fpA1qVOGzxIDP4DP4LI2BzzgDn2UQ+Aw+g8/SGPiMM/BZBoHP4DP4LI2BzzgDn2UQ+Aw+g8/SGPiMM/BZBoHP4DP4LI2BzzgDn2UQ+Aw+g8/SGPiMM/BZBoHP4DP4LI2BzzgDn2UQ+Aw+g8/SGPiMM/BZBoHP4DP4LI2BzzgDn2UQ+Aw+g8/SGPiMM/BZBoHP4DP4LI2BzzgDn2UQ+Aw+g8/SGPiMM/BZBoHP4DP4LI2BzzgDnw2IoZAgVa3QAsXg2aOp5gW5bncWWLoklGvtVTazdEnSrb4vgc/gM/gsjYHPOAOfDYihEFFQN9w+Y7Yxn88phmu0dq0shoQZQxp89vp7D4sHiWi/WHrgjb4LnbzxziMU4pHCb0fIZ9ef3hd++/sqE4EXPHf/r2nv7+M2D6/9dnzXa399gGh/4fD9jZH02c25QEWepJUlujVHXeifhTa5c4neEomIxo7RjcUkC5+4z4aovZUrNPsCEZH4An1+JeHyw2cDYiikqMEeVcBntlmRxgUiYbysNW3GWLtWdp1j12Uid5teE9kNJZdXTeenvGuzzt6kiun8MkuXSooiCSQqRsvfi20oJV+HQRL22YcPimMP/fz89jcv7/h56a/GZnbELozKsV89evhX9ydY/mT7Z1+Kjz4vbg8u+d2RRyneZ6G1z95/6vG9v3vWFdvx8H5GxGf1k/TBx7Frr79NL77dvfD8BH1+lVaW6PY5evHdJAufuM/WXHuLNDdBtUVaWaLbH9LkC3Qz0fLDZwPi6MtU8zmlYXcWMLdjpTdtxlhLl0S5YTNm6ZLTlTPVHJEwbzivK2jNrt3aDSVX1ExjPi/prfDe7KYuic5eLF2iYsXZ1rWibarl+SiZscR9FszfP0SlnQMtdLLwoDi251iiZU7SZz/ZVXh895eBJd+O7Skc2Xs6xmdda799Zi8d2eGt3TFDe2J7ddn1mfayK6eIXKKpCbretfAzOk70jfPzx0QFupVc4RP32Vpr784CCScTLnMw8NmAuPqyjfl8XjHsjs+sqiR0Bh5NNSfXbf9fqypJlUq5pLeYXZd7dcYYs+uyKAiuzVi7Vial0fmlzginpUs51XSWWbok6Q1dkrRWXFm3jM92FH62f/y9HQMsdPPzY7GrRsFnvzu8/9TR+wJLtv/mib3/+NyOmWifda/t8Vl43HIUfLZIsyKdKpBANFagenhkrH6C3joXsRX6Z0PX3s05Ov4unS+QQCS+3L3J5gc+GxC/O2Y3lFx+3rB9n+lSeHjZGQ00FFExWEPJqWZTK8h121DynpJ6d+2PQ4bHJL3/BZdauiSI05omx19F2xI++2DP4SP7aezhv/3tagv9nN899lTCnbMkffbszuPhztlXT/3o1NH7liejfRax9tmdx5/c9eVz25YntzWe3vck7Ts/aj67RK88Q3XnGthVeifY2bpKp57p6Zwt0coS3f6Yppxz9wX6Jq53silJ2Gdrr71vThJNUP0qrSzRnQs0lWjvdgU+G5jg5bK6LORVtdM/i+p32XW5oFW1gly3WUPJqZqaj5s+EvRZbP8s6LOS3goMafayJXzmZGGPOLbn1UEWXt7+xjuPHEz0ylmyPrv+9L6J4BWviQdeE3Zen9wW7bOYtdef2Vt4jOixR3599IEZ2vuPz42Yz8KZC0xeuDVHkz1XzlaWaOUKTRW8qz5X6HiiV4ASH29ca+1df5uOz4U2iR2u3JTAZwMSms5o12WByF1gVSXv+lnbrEheL6xdK4ui6KinKpE/KyRy152+Vtz1s4genKkWI6eDbCWfXd6Zi5isGLlwx09/diD3QeIFTspn931y6MDMWEhvXZMeg52t/muXJ7ctP3v/qSd2fbXpb2Sr+azmzVf8/BjNRc10uKW4E/n8TbTkBs22ms9Wrb3b5+jVuehNEgl8NiBd0/PbtbLgL2gbzoxEEoty1b+qZemSOxOENbUCxd9ZFvJZ3PzGqBFJuy4XosYwE/bZ/J6DL+1+/fL2Ny9v/+X8HjH34OtxC8OSe/7xfT89P7I+2yHTw588G70q5vpZz9qJXQVvfuP1Z/a+9tQPNv+NJOyzCzQ55Q15XaHjJ+iOt+qDJ2K6DldoaopuLnqbTNCN5MqfsM+GqL2r9NaEO0R55wK9eoxuJ1h++CyTJN4/e/Ud51azA0++tOcX5/ss3JmjR15xOmq/3X2UHvpF0jJLzGcTO1+LlVbQZztmurtiIds1ju4tPEZEf/Wa+MPrm/8uEvfZEt2Yo6lDRERTJwI3kwUnMXrxu2K3PqTjzv1nSd9BlXj/bIjau3OJ3pogIhor0PVEO2cr8FkmSdxnqU6y95+lPYn7LNVJ3GdpD3yWQeAz+Aw+S2PgM87AZxkEPoPP4LM0Bj7jDHyWQeAz+Aw+S2PgM87AZxkEPoPP4LM0Bj7jDHyWQeAz+Aw+S2PgM87AZxkEPoPP4LM0Bj7jDHyWQeAz+Aw+S2PgM87AZxkEPoPP4LM0Bj7jDHyWQeAz+Aw+S2PgM87AZxkEPoPP4LM0Bj7jDHyWQeAz+Aw+S2PgM87AZxkEPoPP4LM0Bj7jDHyWQeAz+Aw+S2PgM87AZxkEPoPP4LM0Bj7jDHyWQQjwceix/cjQOXyQkOFClHwZ0p4NalThs8Q4ePBg4h+U0hvCZ2SOHD6YfBnSGxx7nIHPMsiRI0cSP7DSG7QpPIHPeIJjjzPwWQaBz3iCNoUn8BlPcOxxBj7LIPAZT9Cm8AQ+4wmOPc7AZxkEPuMJ2hSewGc8wbHHGfgsg8BnPEGbwhP4jCc49jgDn2UQ+IwnaFN4Ap/xBMceZ+CzDAKf8QRtCk/gM57g2OMMfJZB4DOeoE3hCXzGExx7nIHPMgh8xhO0KTyBz3iCY48z8FkGgc94gjaFJ/AZT3DscQY+yyDwGU/QpvAEPuMJjj3OwGcZBD7jCdoUnsBnPMGxxxn4LIPAZzxBm8IT+IwnOPY4A59lEPiMJ2hTeAKf8QTHHmdG1meGQoqxTvsy1RxNV9vrtDdm6ZKkWxw7SN5nV2j2BSIi8QX6/Iq78KZCLx4iIhp7gbRL0RvenKPjcwmfEsm3KVG1d+cSvSUSEY0doxuL3Ztcf9er2wJd71m7mUneZ1G152aRZp+gb3o2uTkXePbdySQLvzWPvT71cyu4ioiI9M+SLD98xo3dkCVZLhS11rrsLv0+W6S5Caot0soS3f6QJl+gm0u0skizE+4ZcnOOhBN0p2fDG++TSCPvs8jaW6LzE/T5VVpZotvn6MV3Q5vc+ZDEY3Rz0a3DyLrdtCTss5jac1I/SUQRPqufpA8+TrTYXrbmsTdg/Vx/m158O+EKhM9C2GZFGheIhHGpYtrOslZNLopEJBblWoSy7IYs6VZLK+ZU011k6VJJUeWiSCSMl/VmeEdiUdUrvrE6v7GsuS8M+Cxi7WrlYUn77M4CCb0fcj8OtLOLNPsMXQ+/4Ju36ZUS1d8fdZ9F195ndNxviD8mKtCtuD18RscPRTTZm5ZkfRZde86qj2nqJL0T5TPtZfezQuLZisfegPVziaYmuk/qzQ98FqBdK4uS3rQZs5u6JJZrbcbatXJOabQZY+26LJRr3aOK7er0dLXNmKVLgtzwhUR5Z6OWJpGzUUsrest0SSDHWJ3fyFq6JDo78H0WtXa18jCWtM9uztHxd+l8gQQi8WWqO+MPH4ZGKuao5wxZpJUlujXy443Rtde3fxbKBZo8RreTK3+yPourvZUl+ihHtUWa6/XZIs2KdKpAAtFYIbTJ5mcrHnuD1U/9BL11LsnCO4HPOrRrZVIanRcI5VqbtWszQn5GazQtO2o3La0o123GGGtXp11zMUuX/M6aJ6eWXirpXnfKVHOSbjFmVSWhUwpTzcl1u7NJ5NpVysMYS9pn35wkmqD6VVpZojsXaKpAt5xx9rDPtKgTAz6LrL2VJbr9MU05FyheoG/iPyx/lCPtyjoUY+gk67O42rvxvtvaRvjsEr3yDNWdi45X6Z0+fd+Nz1Y89gapn6t0qmfEJZHAZx3C1606vSRTl4vjApFYlKvNsEVMNRe6GOrMCgnuyPvZUKizc99YuhS+mOot7bO2b3kckvXZ9bdDTnK7Yqv2z5ZoBT6Lq70rNFXwLgVdoePhy0J+tALNJX0dKFmfxdXeca8VjvBZOHOJzmjYisfeAPVza44mk75y5gQ+6xDZP/OxLVOTBKkanKhhKHn/ohljdkMWilor2mctvVTQmu4rA/2zzkKfQP8sYm2/8rgk67Pb5+jV8FlRW6SVCzQZvH4WNc1sBT6Lqb1bymq926ukleidrTHgs+Vqr2cOXuTYQHCTpMq/BY+9Qern82PJf5ByAp8FiLp+ZulSTqm3ndWy6F0iY4wxuyGXwpMaTTWXU81In0VfP7OqkneFrG1WJMeO/iZRa/uUxyfh+Y1X6a0Jd4DizgV61bmcs0izh9xPdrcUEmKu8cBn0bV3haam3BmMK1fo+ATdCG6ySHMTNLuQcL05SXh+Y2TtBRLRP7tAk1PeGNoVOp7o7NCteOwNUD8fPLFVJtSMss9COHLrN79RGJfURqA35M0ECeLMCmlF+awzv7FUqSg5r2PVNpzfSGJRrra6N4lYG1ueDonff3bnEr01QRS+HerG+zT2BBGROEG6d42nq6sBn8XV3q0P6bhz/1ngxiCn9m68393/GNn5jXG15yfoM//YuzFHU4eIiKZORNzbt5nZmsdeZP10ztzg5Nukk0Wf2Xb8VImtQNusSOt3t1oEifss1Um8TUl1EvdZqoNjjzNZ8ZnVqJQ1wx3LIxKKqrm1pGablem8SEQkjMfeOLZOwGc8QZvCE/iMJzj2OJMNn7Wr00SiarRrZYEoP63MFAW+r9hINfAZT9Cm8AQ+4wmOPc5kw2eGQjN1m7W0IpFzE9h6fj1j6oDPeII2hSfwGU9w7HEmGz4z1Vxe1lRJcG8Bs+pyPheYST9iwGc8QZvCE/iMJzj2OJMNn3mXzYjy84bNDIWib8waEeAznqBN4Ql8xhMce5zJiM8YY8xut9vOHJB2q7luD29JI/AZT9Cm8AQ+4wmOPc5kyGeMMWZ7Shtp4DOeoE3hCXzGExx7nMmKz7wboYkUgxnzBaU+usON8BlX0KbwBD7jCY49zmTDZ3ZDFoRCWZkvF0kxWEsviev5wOi0AZ/xBG0KT+AznuDY40w2fGYo5Dy1xZ+m38B8fWS4oE3hCXzGExx7nMmGz5paIVfWTatdV0hp2Japl3N9vpo+68BnPEGbwhP4jCc49jiTDZ8x21DyoW9kzcv1kR1uhM+4gjaFJ/AZT3DscSYjPmOMMcusavPz8/PzWtUc4ckgDD7jC9oUnsBnPMGxx5m0+6xVm6+1WKs238vGfufvVgY+4wnaFJ7AZzzBsceZtPvMmQDS/TAzcifujyjwGU/QpvAEPuMJjj3OpN1nzG7bzPlukG5G98ZqIjp8EBkyAID0skGN6qbO168UKqHemN1Q8iP9fcRvXt6ODBciWp7chgyXQ4/tT/xDenpD6J/xJe39s7ahz8/Pl4tULAcuncnTeXG0xxsTt0J6A5/BZ0kFPuNM2n3GmKnme/ucwrg0urefwWfwGXyWysBnnEm/zxiLGG8cbeAz+Aw+S2PgM86k3WeYrx8BfAafwWdpDHzGmbT7DPP1I4DP4DP4LI2BzziTdp9hvn4E8Bl8Bp+lMfAZZ1LvM9ALfAafwWdpDHzGmfT7zG5qZTU8tGiopYo5ut0z+Aw+g89SGfiMM6n3manmSezyWbNSEHKjezs1fAafwWepDHzGmbT7zFRzxYg7zVpacYSFBp/BZ/BZGgOfcSbtPjNinkMdt3wkgM/gM/gsjYHPOJN2nzW1QlT/rKkVR/v51IlbIb2Bz+CzpAKfcSbtPmNWVRLEklo1W84sfatpVNWSKEjV0X2mJ3wGn8FnaQx8xpnU+4wx21SLQvjbGwvzjfam/G6roU7nRSISxouy3nTnVFq6JOndOo1cuDHAZ/AZfJbGwGecyYDPGGOMtZtGw8Fobo7KGGvpkihppvPr2qYmiZLeYmxT1RVJIj47dvpHhw8S0YEnX9pz7GK/hX5+ufDg+JEDRAee/NmDr3prfzm/5+iRA0T7xWO7Xh89n11/el/4a272VSa2LU9u+/Jv9j3/GBEdOCrs+vK57q36rx0pn92cC1TeyX4Lndyaoy70zxIrfOI+61NRN+fo+FzUVldo9gUiIvEF+vxKwuXPis82H7shCzP14F1uLV2W6y3GmKVLpXldLYlEwni56nyPZEByrWp5XCChMON/xWSrKhfHBSISxiX/1rlWTS6KRGJR1Sv+trZZkcaF8Au72Xyf/fLvH378Z7tfv7j9zcvbX/27Rx479sAvYxYGtrr/pbF9Pz2//c3L24+/t+/w6fvfvLz9zfO7xsce+vl5V2xjv7p/1HwWspT46PPi9uXJbd+O7T1yaGfjuW3Lk9u+emrfk4d/+G3gZf3XjprP6ifpg48HWtib62/Ti28nWfjEfRZXUTfeJ5GifLZIcxNUW6SVJbr9IU2+QDcTLT98NizGvFCuRXcFLV2inFJvM8ZamkTOy3yftbRiTmnYrF2bEeSG7SzJK84IaUuTyLn011nY0iWBnG3btbIo6U2bMbupS2JMARIeb/zt7qMH9/xi1YW/3X2UHnKXfPAQvbT7jcvbf3n2YSrt9F6zM/f4Q937GR2f/WRX4fHdX/Yun3jgtcd2/z5uq/5rR8Bn2sv0+dWBFnbnEk1N0PVEC5+4zyIr6pu36ZUS1d+P8NmdBRJOrsPvXa/AZ8PS544AS5f8u998jXk/tGtlYT7+VgJDcdTV0ksl3eu+mWrO25aURuelMUZN2Gfzew7+bNfx1RdG9M+6fUaPFH47oj773eH9p47eF7FqfPfEoftvxG3Yf23mfbZIsyKdKpBANFag+mfxC3tSP0FvnUu4OU7YZ3EVtUgrS3Qrarzx5hwdf5fOF0ggEl+OrdtNC3w2LP37Z/71s/vXQgoAABYASURBVB6fRV5cazfr2vy8PF3Ii+T4zPNaaCfhbWMv0yXqs/tfnHjklQ8HWbj9+Ad7RGekPrfnF+e3v3l5+5vnd4/l3Cttr7/zyGP0yCuj6bNndx6P7JxNbv/NE/vOT8Rt2H/tCPjsEr3yDNUXaWWJVq7SOwW6FbewK1fp1DMJd85WEvdZ34qK9Nk3J4kmqH6VVpbozgWaiqzbTQx8Niy918/a1WlnALGvzyL6Z6aaz89o9YbZatuNTv+scwddavpnP3zlpUdzHwyycPubHz4ovvTg697PR3Puz2+cfUg8SHTwx8+9tztHD/9tzyySUfDZ9af3TYjbe5b/4Lzw45mxuK36rx0Nn4UzFzW5I3LhrTmaTPTKmZPExxv7VFSkz66/HVo4RwOM625k4LPhcec3WjZjzvxGwb21u6/P/OtndkNxLGVVpZxzpaxtapJAzjhj6q6fnb//lZ8/MvHeD1df6Hhr5kddQ4vdXbHzu8YnHnx109/IFvDZfZ8cOtBtpme3nz/8o9NHfxC9Sf+1I+wzZ6rCqgs/P0ZzA0wY2ehsNZ8FKyrSZ7fP0atzsZtsfuAzHuym7s9LjLn/rNdn/vxGf+qjN2dRLMp6Q/e7YN78xlKlouS8+8O35vzGNy/uzI09+tzZHasv9PPhg+Ir7uzHNz988OjYnledhU+58xvfOPvQ0b+LEOEI+GyHTA9/8mxgyXM7Zh5/9NfP/GX06/uvHSmfXaDJKW/I6wodP0F34haG88ETCXcsnCTss74VFemzlav01oQ7RHnnAr16jG4nWoHw2danbVakotZa/YUem++zV//u0fA9PA/9ImZhsCv2xt87t5odeDL38E+9q2uvv/eweJDo8f1Hf/XAG5susy3hs4mdr9He4BzFr576cbgmnbU7Zmjf+Ym4tSPpsyW6MUdTh4iIpk7QjcV+C+eINGc87TM6TvRNosV2knj/LLKinHT5zK+9O5forQkiorECXU+0c7YCn21ZbLPifPMICeNFubYGmyU+vzHlSd5naU7iPkt1EvdZ2gOfZRD4DD6Dz9IY+Iwz8FkGgc/gM/gsjYHPOAOfZRD4DD6Dz9IY+Iwz8FkGgc/gM/gsjYHPOAOfZRD4DD6Dz9IY+Iwz8FkGgc/gM/gsjYHPOAOfZRD4DD6Dz9IY+Iwz8FkGgc/gM/gsjYHPOAOfZRD4DD6Dz9IY+Iwz8FkGgc/gM/gsjYHPOAOfZRD4DD6Dz9IY+Iwz8FkGgc/gM/gsjYHPOAOfZRD4DD6Dz9IY+Iwz8FkGgc/gM/gsjYHPOAOfZRACvBxAhg0ASbJBjSp8lhgHDx5M/INSekPon/H1zxIvQ3qD3i1n0D/LIEeOHEn8wEpv4DPOFjnxMqQ38Bln4LMMAp/xBD7jbJETL0N6A59xBj7LIPAZT+AzzhY58TKkN/AZZ+CzDAKf8QQ+42yREy9DegOfcQY+yyDwGU/gM84WOfEypDfwGWfgswwCn/EEPuNskRMvQ3oDn3EGPssg8BlP4DPOFjnxMqQ38Bln4LMMAp/xBD7jbJETL0N6A59xBj7LIPAZT+AzzhY58TKkN/AZZ+CzDAKf8QQ+42yREy9DegOfcQY+yyDwGU/gM84WOfEypDfwGWfgswwCn/EEPuNskRMvQ3oDn3EGPssg8BlP4DPOFjnxMqQ38Bln4LMMAp/xBD7jbJETL0N6A59xBj4bGkMhxei7YChaeknl3EviPrs5F3ge0Ulv4TmaOkRENHWSbvVuotCLh4iIxl4g7VKShU/cZ9/+ZNepvz5AdODooV1fPecubBzdW3iMiPYXjtx/vWeT/ms3uUVO8Ldff3pf+GFY+yoT25Ynt335N/uef4yIDhwVdn353ECbJFV7OHN5Ap8NzQb5bB32krjP6ifpg4/DC6/Q1ATVr7prTynhtYs0O0GfX3HPKOEE3Umu8En77AcLjz/0ybPblie33Tj60PN/84PlyW3LE7sKj+/93bPblifv+92RR48/fV9ok/5rN71FTrT2OvlSfPR5cfvy5LZvx/YeObSz8dy25cltXz2178nDP/x2tU0SrD2cuTyBz4amn89ssyKNC0TCuFQxbcYYY5YuSbrFun5u1eSiSERiUa61GLN0yfloJOlWzE5KiioXRSJhvKw37ciSJe4z7WX6/Gr8Cz7sfPRz83HgTFik2WfoenKFT9hnEw+8Rnt/7/w8tpeEB7r7W2N76ciO2M37r92UFjnJ2vPzk12Fx3d/GVm9j+3+/Zo22dzaw5nLE/hsaOJ91q6VRUlv2ozZTV0Sy7U2i/ZZu1bOKY02Y6xdlwXndd5e4nZCeWeLliaRs7CHhH22SLMinSqQQDRWoPpn3S/Qj9Fb5/qdJ3PU96Ta4GzF/lknf1k5tP/U0bgeWP+1m9QiJ1p7bn53OKYexndPHLr/xpo22dzaw5nLE/hsaAyFevBMREqj8zJHVNE+mxHyM1qjadnB3SpGn53kVDO8k14S9tkleuUZqi/SyhKtXKV3CoEx94/pRZFogmrhU+XWXPdZofWcS5uWpH227cbY7oJzOD25+/fPBlaN7X7+r/fT43v/MfICT/+1m9giJ1t7y5Pblp/deTy6p7X9N0/sOx9ZP7GbbHbt4czlCXw2NLH9s7BovP9Fjze2TV0ujgtEYlGuNu3OXtayk24SH28MZo5I7zrEL9HUBN0ILtlKn/KSHm/cVRB2NbyfX3vS+9nPT3YVHt/1Vdzm/dduSoucZO1Nblue3Hb96X0TEZfBfnBe+PHM2Jo2SaD2Ej9h03vmrsBnHMT6LLZrVdJbzrKmVgiryLZMTRKkqrV6/yyFPqstrnaqXKDJ4Cj8E/RNcgVO1mfXn94XuAC2Y4Z6+xM7ZvrNweu/djNa5ARrb3ly2/LkfZ8cOtDtrWe3nz/8o9NHf7CGTRKqvcRP2PSeuSvwGQdrvH7WrpVJ0lqMsXZDyZPX3cop9bazjSzKDZsxQ6GZur2Gi3C9JOyzCzQ55Y1UXKHjzuF+gSYLdHOJVpbozgWaesH9ecU/Ew6558kthYRjdDu58iffPzvoTsZbntj1mtPZGt89ITzgdNS+Hd9V6Oq09V+76S1ykrU3uW15codMD38SHKd9bsfM44/++pm/XMMmydUezlyewGdDs8b5jYy1ajMFgUgsVaqV7vmNwrikNpwRyLpSEPrMb9z6PluiG3PeDSsn6MZi98KxAn3jDUr4A+433qexJ4iIxAnSryRZ+MSvn10f2/2ac//Zk3s/8XpaXz3t3GF24Kiwy7uo1um9Ra1NrEVOtvaWJ3Z2Jog6VffUj8NXuZ21gb5vzyYJ1h7OXJ7AZxkkcZ+lOon7LNVJ3mdpTuI+S3vgswwCn/EEPuNskRMvQ3oDn3EGPssg8BlP4DPOFjnxMqQ38Bln4LMMAp/xBD7jbJETL0N6A59xBj7LIPAZT+AzzhY58TKkN/AZZ+CzDAKf8QQ+42yREy9DegOfcQY+yyDwGU/gM84WOfEypDfwGWfgswwCn/EEPuNskRMvQ3oDn3EGPssg8BlP4DPOFjnxMqQ38Bln4LMMAp/xBD7jbJETL0N6A59xBj7LIPAZT+AzzhY58TKkN/AZZ+CzDAKf8QQ+42yREy9DegOfcQY+yyDwGU/gM84WOfEypDfwGWfgswwCn/EEPuNskRMvQ3oDn3EGPssg8BlP4DPOFjnxMqQ38Bln4LMMAp/xBD7jbJETL0N6A59xBj7LIEeOHDl8kJDhQkSHHtuPIIkk8eM/7dmgRhU+AwAAkAXgMwAAAFkAPgMAAJAF4DMAAABZAD4bBey6XNCa3v/atTJR4P8tvVSu/R9dknQrdg8tvaQaG1rGLYXVUKfzIhEJ40VZb9pJlyftDFefVv9jciQw1RxNV9urvGrETs944LORoF0rS1WvZWgouXK501K0a+XVWw1DIWVkTphmJZ9XGk4b0jY1SSzXVmtQQB9Qn8NiN2RJlgtFrdX/dSN1evYDPhsNLF2S687HYlPNKQ1TzXmNiqEUtWbns7ClSyVFlYsikTBe1ps2Y5YuERERSbrFbLMijQtEwnhZcz9oW7pUUhRJIFExMtCVsaoSKY3O/001J1WtcHchWF1SRVeLIpFYVA3L8H+0V13LRqAyWf/69CtHrjlNdvDtt/ock4wx1qrJbnXqlUz25OyGLOlWSyvmVNNdFHEQBk7P/z3UIRpVtykFPhsRmlpx3nB+KJRrbWYogiM4Uy2qZvjoJ/fTdEuTyLWe9wGwXSuLknPQt3RJlBvuKUHFSjOhd7b+WFVJEEuKXjdb7cDpHeczyimNNmPtuiwIhflGm7F2Q/Gb7D5rR6IyWb/6JEHSW4wxqybnnE5I8O33PyZbWtFbpksCZdBn7er0dLXNmKVLgnNwxByE/uk55CHae76nFfhsVDBVSWt2RhftuiwoBmOWLoXPBEuX/E+DPSeMVZWEzsCGqebkuh3eJCNYhj5fLuVFImFcUhsWY/GNhffewz8K88Yqa0emMllsfXbef1MreM1r7+EXtbCll0q6Nwxnqrns+aylFd0xlXZ12hPNcD4b7BDNwAVL+GxkMJTpqtWZGdKulQta067LzokSGp2IPWH8oQ0PSbeycBrEY7cMVRKKWqvPeKO7MPyjV1/xa0evMllsffr/Wa2S/Z8NhXq3zhKmmgsdHc6skOF8NtghmoFqhM9GBrsuz2h6WfQ+Eje1QlFVZfcAHtBnVSkwMdIj/adBELsuk3et0aEjc79H0NQK/D4bgcpk/etTmI/onw3ms5Ze6tReBvtnhpIPdNPthux/COg9CIM+4zhEM3DswWejQ7tWJgo0Laaa68zbX91nM3WbMasqeZd82mZFck659J8GIWxjPp+f0c3uCXntWpkkrcUYazeUPHH7bCQqk8XXZ/j6Wb5rnICtdkxm+vqZ3ZBL4UmNpprLqWb0QeifnnyHaAaOPfhshGjXyqHrvYYiRF6riDi+23Wl4LQZbcOZkkdiUa62ul6WFfz7pcI3TLVqMwWBSCxVqpXe6lqzz9hoVCaLqU9Ll0qKOlMQSBiXKoZzXA7us878xlKl4k5uyAreTJAg3qyQiIMwcHryHKIZOPbgMwBAEqxb69k2K9Kqt2iBUQA+AwAkAZ/PbLMS6PLVYDPA4DMAAADZAD4DAACQBeAzAAAAWQA+AwAAkAXgMwAAAFkAPgMAAJAF4DMAUob3lBkS89MVM90P+ABgHYHPAEgVdkMWqFBpMmZVp4k6X4EIwKgDnwGQKixdIu97DwN4X50V6rO53whFJOb9B4b6C4XxolL372e2Gqr7aFFJqbf8X1Sa19VS6Bmk0ZsDsAWAzwBIFc7XShMJhaCNdIlI0lvOQxkF/4mXglxvM8aM+RyR8w2HVlUiKuktZ6H7nEjbmM97z3xsKDnKzxu2+zybYqXJWLNScL+6OnJzALYG8BkAKaNVnRbJddpMrcUYa+kl8r5rvaWXOk9RaDcbekV2rrZ1nlZMJBRmNKPluciuy0T+V1M3tQJRudZ2OoLOcKahEAWegBfeHIAtAnwGQPpom/pMQSAioqLWcnTT82hQU80T5We0RtN0um8WY4zZhlp0dUjitN60/d5d51vWiSTdCi71fRa1OQBbBPgMgJRiGarkaKallyj0KCDG3OfbOR21plag0BPC7JZZrUznydmqT/+sx2cRmwOwRYDPAEgT7VqZ3EtdrKV5xmlpRXeOSEuXnD4ba2lFokKlyWxDyfvjjaaao8BVNcHtdCm56Otn3T6L3ByArQF8BkC6CD4cU1Iblr/Um5/oLbPNSkl0ZizOlztzP5q6XOy9fa13+5jxxujNAdgCwGcAAACyAHwGAAAgC8BnAAAAsgB8BgAAIAvAZwAAALIAfAYAACALwGcAAACyAHwGAAAgC8BnAAAAsgB8BgAAIAvAZwAAALIAfAYAACALwGcAAACyAHwGAAAgC8BnAAAAsgB8BgAAIAvAZwAAALIAfAayzx/+dPGz//V+n/zhTxeTLuN68p//ce/ezX/4859+E5d7//LBn61/SrqYsfzHyr/drfzXu/9tNi53Pnr3/13/Kuligi0HfAayz6f//N6bl7f3yaf//F7SZVxP/vPP39vXfrWyRHH5/n8Kf76lJV3MWP79/97+13enlie3xeXWy3v+7ff/Peligi0HfAayz1A+u7ZQCnNm8bv1KtB3i2fWcW89rN1n9+rnTl++6f3v7hdnS6XA/7/7tHz2i7sbVtwehvLZtYXSwrW+C8Isf3pG7bMapBH4DGSfYX3WrzncygzRP7v7xdnZRcv9z9cLp86e7Rj37hdnN9K+vWyKz1L89wVxwGcg+6ybz75bPFNeWJgtlU4sXLvHvv/jxTMnSqVS6cTZyze/d1/Su/C7xTPd3Ty/f/bd4pnygnru9IlSqXTi7Kc377m/54tzp0+USidOq4sXh+jJDTPe+N3imXN159eb6qmFr/+onvL6ZNcWypdvMnZveelc+USpVCqVTpy5+EfvvfkVsrx45szFRdUt+DXrmv/j92xtrLvPOn8Ut+D+32RzRQ02GPgMZJ/19FmpfPHmPXbvHrv7xdkTs58u32Ps3vKnsyfOfX2PseiFPt9fWzizcO17FvJZ6dTC13fvsXvLn54pOQZZvlw+tfD1XWcfwzS5Q10/u3m5/NEfnR9On/3iLru2UHIEZ6pl1QyUyimq05sLVoj3Xhi7Wz9XKp3+6Ou7jN39euFUp+M3IOvss64/iqtp9M8yCHwGss96XD9buMYY+27xzCnVZIwxZi3OBtpDUz11rn4veqHHd4uzs66agj7zdugv/O7TcvnT7zr72CSfMVM9c/lmZ3TxXv1caeEaY98tzva0+9cWSpHl934O/1hyPDk4w/qsh4VrzLkauPB14GWO0OCzDAKfgeyznv2zMx0l9U4XiVzIGAt0zcL7CU4M8X72ZdH1GwdnyPmN1xZmF63OzJC7X5w9ffnmvfo5b9zx7nL98kcfnZs9fepEqRRf/t56Wqs31rd/Fq5C/3/wWQaBz0D22QifWYuzgRmALpELWahrFt5PlA+++7Tc2ckm9s/Yvfo55dNPz57w3vbNy6fL6sVzbslN9dQp5XL9a3P57vdfL6TIZ+ifjQ7wGcg+G+Ez9t3irHtVht01L7rja1ELw12z8H4ifZDM9TPmztMvdcZITfWUP2/fWpx1L5/dNS/PlkrOkGgafBZ//Uypr3WmCtjawGcg+2yIzxi768+aO31uaflezMKeMciFa6v4rDO/8czFy0NMpxj+fuq7X5wtBe80u7ZQ8i+PeXMET5w+t/j1p26XJxU+i5jfyBi7+/XCacxvzBjwGcg+f/jTxf9x7f0++act+n1Xd82LZ8qXl9e6mft9V//ym7jc+5cP/v1f/7ARJV4XVv++q3/4L7aB77sC3cBnAGwt7pmXZ0+593mVz32B/gMAAwKfAQAAyALwGQAAgCwAnwEAAMgC8BkAAIAsAJ8BAADIAvAZAACALACfAQAAyALwGQAAgCwAnwEAAMgC8BkAAIAsAJ8BAADIAvAZAACALPD/ATTnreAEp57zAAAAAElFTkSuQmCC" alt="" />

第一种方法

后台假数据

StringBuilder stringBuilder = new StringBuilder();
2
3 //标题
4 stringBuilder.append("<chart theme='fint' caption='Top 4 US Cities' subcaption='Average temperature (°F) in seasons (2013-14)' xaxisname='Seasons' yaxisname='Cities' showplotborder='1' mapbycategory='1'>");
5
6 //行
7 stringBuilder.append("<rows>");
8 stringBuilder.append("<row id='NY' label='New York' />");
9 stringBuilder.append("<row id='NY' label='New York' />"
10 +"<row id='LA' label='Los Angeles' />"
11 +"<row id='CH' label='Chicago' />"
12 +"<row id='HO' label='Houston' />");
13 stringBuilder.append("</rows>");
14 //列
15 stringBuilder.append("<columns>");
16 stringBuilder.append("<column id='wI' label='Winter' />"
17 +"<column id='SU' label='Summer' />"
18 +"<column id='SP' label='Spring' />"
19 +"<column id='AU' label='Autumn' />");
20 stringBuilder.append("</columns>");
21 //数据
22 stringBuilder.append("<dataset>");
23 stringBuilder.append("<set rowid='LA' columnid='WI' value='60.10' colorrangelabel='Warm' />"
24 +"<set rowid='LA' columnid='SP' displayvalue='25.3' colorrangelabel='Warm' />"
25 +"<set rowid='LA' columnid='SU' displayvalue='68.2' colorrangelabel='Warm' />"
26 +"<set rowid='LA' columnid='AU' displayvalue='65.7' colorrangelabel='Warm' />"
27 +"<set rowid='NY' columnid='WI' displayvalue='33.7' colorrangelabel='Freezing' />"
28 +"<set rowid='NY' columnid='SP' displayvalue='57.8' colorrangelabel='Warm' />"
29 +"<set rowid='NY' columnid='SU' displayvalue='74.49' colorrangelabel='Hot' />"
30 +"<set rowid='NY' columnid='AU' displayvalue='57.6' colorrangelabel='Warm' />"
31 +"<set rowid='CH' columnid='WI' displayvalue='22.89' colorrangelabel='Freezing' />"
32 +"<set rowid='CH' columnid='SP' displayvalue='55.7' colorrangelabel='Warm' />"
33 +"<set rowid='CH' columnid='SU' displayvalue='72.2' colorrangelabel='Hot' />"
34 +"<set rowid='CH' columnid='AU' displayvalue='51.6' colorrangelabel='Warm' />"
35 +"<set rowid='HO' columnid='WI' displayvalue='53.0' colorrangelabel='Warm' />"
36 +"<set rowid='HO' columnid='SP' displayvalue='72.7' colorrangelabel='Hot' />"
37 +"<set rowid='HO' columnid='SU' displayvalue='83.3' colorrangelabel='Hot' />"
38 +"<set rowid='HO' columnid='AU' displayvalue='53.0' colorrangelabel='Warm' />");
39 stringBuilder.append("</dataset>");
40 stringBuilder.append("<colorrange gradient='0'>");
41 stringBuilder.append("<color code='#6da81e' minvalue='0' maxvalue='50' label='Freezing' />"
42 +"<color code='#f6bc33' minvalue='50' maxvalue='70' label='Warm' />"
43 +"<color code='#e24b1a' minvalue='70' maxvalue='85' label='Hot' />");
44 stringBuilder.append("</colorrange>");
45 stringBuilder.append("</chart>");

HTML里的

<script type="text/javascript" src="${pageContext.request.contextPath}/funsioncharts/fusioncharts1.js"></script>
<script type="text/javascript" src="${pageContext.request.contextPath}/funsioncharts/fusioncharts.theme.fint.js" ></script>
<script type="text/javascript" src="${pageContext.request.contextPath}/funsioncharts/fusioncharts.powercharts.js" ></script> <script type="text/javascript">
$(function(){
$.ajax({
url:"sum/tableList.do",
type:"POST",
dataType:"html",
data:{}, success:function(msg){
if(msg){
var fusioncharts = new FusionCharts({
type: 'heatmap',
renderAt: 'chart-container',
width: '550',
height: '300',
dataFormat: 'xml',
dataSource:msg
});
fusioncharts.render();
}
}
});
});
</script> <div id="chart-container">FusionCharts XT will load here!</div>

第二种方法

HTML==》JSON

 <script type="text/javascript" src="http://static.fusioncharts.com/code/latest/fusioncharts.powercharts.js"></script>
<script type="text/javascript" src="http://static.fusioncharts.com/code/latest/themes/fusioncharts.theme.fint.js?cacheBust=56"></script> <script type="text/javascript"> FusionCharts.ready(function(){
var fusioncharts = new FusionCharts({
type: 'heatmap',
renderAt: 'chart-container',
width: '550',
height: '300',
dataFormat: 'json',
dataSource: {
"chart": {
"theme": "fint",
"caption": "Top 4 US Cities",
"subcaption": "Average temperature (°F) in seasons (2013-14)",
"xAxisName": "Seasons",
"yAxisName": "Cities",
"showPlotBorder": "1",
"mapByCategory": "1"
},
"rows": {
"row": [{
"id": "NY",
"label": "New York"
}, {
"id": "LA",
"label": "Los Angeles"
}, {
"id": "CH",
"label": "Chicago"
}, {
"id": "HO",
"label": "Houston"
}]
},
"columns": {
"column": [{
"id": "wI",
"label": "Winter"
}, {
"id": "SU",
"label": "Summer"
}, {
"id": "SP",
"label": "Spring"
}, {
"id": "AU",
"label": "Autumn"
}]
},
"dataset": [{
"data": [{
"rowid": "LA",
"columnid": "WI",
"value": "60.10",
"colorRangeLabel": "Warm"
}, {
"rowid": "LA",
"columnid": "SP",
"displayValue": "64.5",
"colorRangeLabel": "Warm"
}, {
"rowid": "LA",
"columnid": "SU",
"displayValue": "68.2",
"colorRangeLabel": "Warm"
}, {
"rowid": "LA",
"columnid": "AU",
"displayValue": "65.7",
"colorRangeLabel": "Warm"
}, {
"rowid": "NY",
"columnid": "WI",
"displayValue": "33.7",
"colorRangeLabel": "Freezing"
}, {
"rowid": "NY",
"columnid": "SP",
"displayValue": "57.8",
"colorRangeLabel": "Warm"
}, {
"rowid": "NY",
"columnid": "SU",
"displayValue": "74.49",
"colorRangeLabel": "Hot"
}, {
"rowid": "NY",
"columnid": "AU",
"displayValue": "57.6",
"colorRangeLabel": "Warm"
}, {
"rowid": "CH",
"columnid": "WI",
"displayValue": "22.89",
"colorRangeLabel": "Freezing"
}, {
"rowid": "CH",
"columnid": "SP",
"displayValue": "55.7",
"colorRangeLabel": "Warm"
}, {
"rowid": "CH",
"columnid": "SU",
"displayValue": "72.2",
"colorRangeLabel": "Hot"
}, {
"rowid": "CH",
"columnid": "AU",
"displayValue": "51.6",
"colorRangeLabel": "Warm"
}, {
"rowid": "HO",
"columnid": "WI",
"displayValue": "53.0",
"colorRangeLabel": "Warm"
}, {
"rowid": "HO",
"columnid": "SP",
"displayValue": "72.7",
"colorRangeLabel": "Hot"
}, {
"rowid": "HO",
"columnid": "SU",
"displayValue": "83.3",
"colorRangeLabel": "Hot"
}, {
"rowid": "HO",
"columnid": "AU",
"displayValue": "53.0",
"colorRangeLabel": "Warm"
}]
}],
"colorRange": {
"gradient": "0",
"color": [{
"code": "#6da81e",
"minValue": "0",
"maxValue": "50",
"label": "Freezing"
}, {
"code": "#f6bc33",
"minValue": "50",
"maxValue": "70",
"label": "Warm"
}, {
"code": "#e24b1a",
"minValue": "70",
"maxValue": "85",
"label": "Hot"
}]
}
}
}
);
fusioncharts.render();
});
</script> <div id="chart-container">FusionCharts XT will load here!</div>

XML的配置(前面两种皆可以实现,这里的XML只供参考)

 <?xml version="1.0" encoding="UTF-8"?>

 <chart theme="fint" caption="Top 4 US Cities" subcaption="Average temperature (°F) in seasons (2013-14)" xaxisname="Seasons" yaxisname="Cities" showplotborder="1" mapbycategory="1">
<rows>
<row id="NY" label="New York" />
<row id="LA" label="Los Angeles" />
<row id="CH" label="Chicago" />
<row id="HO" label="Houston" />
</rows>
<columns>
<column id="wI" label="Winter" />
<column id="SU" label="Summer" />
<column id="SP" label="Spring" />
<column id="AU" label="Autumn" />
</columns>
<dataset>
<set rowid="LA" columnid="WI" value="60.10" colorrangelabel="Warm" />
<set rowid="LA" columnid="SP" displayvalue="64.5" colorrangelabel="Warm" />
<set rowid="LA" columnid="SU" displayvalue="68.2" colorrangelabel="Warm" />
<set rowid="LA" columnid="AU" displayvalue="65.7" colorrangelabel="Warm" />
<set rowid="NY" columnid="WI" displayvalue="33.7" colorrangelabel="Freezing" />
<set rowid="NY" columnid="SP" displayvalue="57.8" colorrangelabel="Warm" />
<set rowid="NY" columnid="SU" displayvalue="74.49" colorrangelabel="Hot" />
<set rowid="NY" columnid="AU" displayvalue="57.6" colorrangelabel="Warm" />
<set rowid="CH" columnid="WI" displayvalue="22.89" colorrangelabel="Freezing" />
<set rowid="CH" columnid="SP" displayvalue="55.7" colorrangelabel="Warm" />
<set rowid="CH" columnid="SU" displayvalue="72.2" colorrangelabel="Hot" />
<set rowid="CH" columnid="AU" displayvalue="51.6" colorrangelabel="Warm" />
<set rowid="HO" columnid="WI" displayvalue="53.0" colorrangelabel="Warm" />
<set rowid="HO" columnid="SP" displayvalue="72.7" colorrangelabel="Hot" />
<set rowid="HO" columnid="SU" displayvalue="83.3" colorrangelabel="Hot" />
<set rowid="HO" columnid="AU" displayvalue="53.0" colorrangelabel="Warm" />
</dataset>
<colorrange gradient="0">
<color code="#6da81e" minvalue="0" maxvalue="50" label="Freezing" />
<color code="#f6bc33" minvalue="50" maxvalue="70" label="Warm" />
<color code="#e24b1a" minvalue="70" maxvalue="85" label="Hot" />
</colorrange>
</chart>

 

funsioncharts的图表操作heatmap的更多相关文章

  1. Gremlin--一种支持对图表操作的语言

    Gremlin 是操作图表的一个非常有用的图灵完备的编程语言.它是一种Java DSL语言,对图表进行查询.分析和操作时使用了大量的XPath. Gremlin可用于创建多关系图表.因为图表.顶点和边 ...

  2. iReport4.6.0图表操作

    做报表.图表肯定是少不了的.尽管是疲惫的周一工作还是要做啊... 第一步:创建一个新的空白项目,数据源创建这个网上非常多资料,不是本章重点就不再详述 第二步:iReport界面,窗体->组件面板 ...

  3. 帆软报表(finereport)图表操作细节

    图表间之间的组件间隔:body-->属性-->布局-->组件间隔 决策报表背景水印:body-->属性-->水印 仪表盘指针/枢纽/背景颜色:样式-->系列 柱形图 ...

  4. VUE之图表操作

    参考 v-charts文档有详细说明,不多做介绍. 感谢博主的梳理,我在此基础之上稍作修改 效果展示: 在工作中遇到了就记录下来,留作备用,以便今后查阅: 安装 npm install vue-sch ...

  5. Excel操作类

    '引入Excel的COM组件 Imports System Imports System.Data Imports System.Configuration Imports System.Web Im ...

  6. 纯JavaScrip图表插件——Highcharts

    简介 Highcharts 是一个用纯JavaScript编写的一个图表库, 能够很简单便捷的在web网站或是web应用程序添加有交互性的图表,并且免费提供给个人学习.个人网站和非商业用途使用.目前H ...

  7. labview图形和图表的类型

    http://zone.ni.com/reference/zhs-XX/help/371361L-0118/lvconcepts/types_of_graphs_and_charts/ LabVIEW ...

  8. 美丽的Java图表类库

    摘要 在使用java做后台站点的开发张,图表和报表功能都是不可或缺 的.本文推荐了8款最精彩实用的Java图表应用,大部分图表应用的功能都类似,主要在于界面的美观性和使用的灵活性上有一点高低. 正文 ...

  9. Android绘图机制(四)——使用HelloCharts开源框架搭建一系列炫酷图表,柱形图,折线图,饼状图和动画特效,抽丝剥茧带你认识图表之美

    Android绘图机制(四)--使用HelloCharts开源框架搭建一系列炫酷图表,柱形图,折线图,饼状图和动画特效,抽丝剥茧带你认识图表之美 这里为什么不继续把自定义View写下去呢,因为最近项目 ...

随机推荐

  1. (TODO:)下载图片,报错:warning: could not load any Objective-C class information from the dyld shared cache. This will significantly reduce the quality of type information available.

    想使用NSInvocationOperation下载图片,然而并没有下载下来, NSData为nil, 还有报错:(打断点就报错) warning: could not load any Object ...

  2. SQL INSERT INTO 语句

    SQL Order By SQL update INSERT INTO 语句 INSERT INTO 语句用于向表格中插入新的行. 语法 INSERT INTO 表名称 VALUES (值1, 值2, ...

  3. Linux小技巧1:如何关闭Root用户SSH登陆

    新建用户 >useradd nonroot //新建用户 >passwd nonroot //创建/修改nonroot用户密码 >vim /etc/ssh/sshd_config 将 ...

  4. shell -vim

    编辑文件 vim vim 1.txt 点击i进入编辑模式 如果发现按上下左右有问题的且出现乱码的话,可能是编码格式不对导致的,在crt或者是xshell设置一下编码格式就行. 保存是点击ecs先退到预 ...

  5. [软件测试基础2]基于selenium的自动化测试

    这次上机我们主要使用Selenium进行自动化测试,首先我们需要下载selenium-java的依赖项. 若使用maven管理项目,则在.pom文件中加入如下依赖项: <dependency&g ...

  6. QStandardItemModel-Delegate

    //delete.h #ifndef DELEGATE_H #define DELEGATE_H #include<QItemDelegate> #include<QModelInd ...

  7. ssl双向认证和单向认证原理

    有朋友在搞一个项目,周末有聊到一些安全性的东西,很自然会想起https,但https究竟如何实施,其原理又是什么? 基于ssl,一般的应用都是单向认证,如果应用场景要求对客户来源做验证也可以实现成双向 ...

  8. html中submit和button的区别/ window.location.href 不跳转 的问题

    <input type="button">  <input type="submit"> 这两个的区别 是 button 不会自动提交表 ...

  9. 转:HAR(HTTP Archive)规范

    HAR(HTTP Archive),是一个用来储存HTTP请求/响应信息的通用文件格式,基于JSON.这个格式的出现可以使HTTP监测工具以一种通用的格式导出所收集的数据,这些数据可以被其他支持HAR ...

  10. 本机,同机房,同城,异地,不同城,腾讯云ping延时值

    本机,同机房,同城,异地,不同城,腾讯云ping延时值 ping本机: 0.01ms ping同机房机器: 0.1ms ping同城机器: 1ms ping不同城机器: 20ms 北(南)方ping南 ...