题目链接:http://poj.org/problem?id=2151

题目大意:有M个题目,T支队伍,第i个队伍做出第j个题目的概率为Pij,问每个队伍都至少做出1个题并且至少有一个队伍做出N题的概率。

先定义状态dp[i][j][k],代表第i支队伍从前j个题目里正好做出k题的概率。

有:dp[i][j][k] = dp[i][j-1][k]*(1-p[i][j]) + dp[i][j-1][k-1]*p[i][j];

然后设f[i]为前i支队伍里,每队至少做出一个题并且至少有一个队伍做出N题的概率。

那么f[i] = f[i-1]*(第i支队伍做出不少于1题的概率) + (1-f[i-1]-存在队伍没做出题的概率)*(第i支队伍做了不少于N题的概率)

上面这个是个全概率公式

于是乎:

 ///#pragma comment(linker, "/STACK:102400000,102400000")
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <map>
#include <set>
#include <bitset>
#include <cmath>
#include <numeric>
#include <iterator>
#include <iostream>
#include <cstdlib>
#include <functional>
#include <queue>
#include <stack>
#include <string>
#include <cctype>
using namespace std;
#define PB push_back
#define MP make_pair
#define SZ size()
#define ST begin()
#define ED end()
#define CLR clear()
#define ZERO(x) memset((x),0,sizeof(x))
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> PII;
const double EPS = 1e-; const int MAX_T = ;
const int MAX_M = ; int M,T,N;
double p[MAX_T][MAX_M],f[MAX_T],any[MAX_T],dp[MAX_T][MAX_M][MAX_M]; int main(){
while( ~scanf("%d%d%d",&M,&T,&N), M!=&&T!=&&N!= ) {
ZERO(dp);
ZERO(f);
ZERO(any);
for(int i=;i<=T;i++) {
for(int j=;j<=M;j++) {
scanf("%lf",&p[i][j]);
}
}
for(int i=;i<=T;i++){
dp[i][][] = 1.0;
for(int j=;j<=M;j++) {
dp[i][j][] = dp[i][j-][]*(-p[i][j]);
}
for(int j=;j<=M;j++){
for(int k=;k<=j;k++){
dp[i][j][k] = dp[i][j-][k]*(-p[i][j]) + dp[i][j-][k-]*p[i][j];
}
}
for(int j=;j<=M;j++){
for(int k=;k<=M;k++){
dp[i][j][k] += dp[i][j][k-];
}
}
} f[] = 0.0;
any[] = 1.0;
for(int i=;i<=T;i++){
any[i] = any[i-]*(1.0-dp[i][M][]);
}
for(int i=;i<=T;i++){
any[i] = 1.0 - any[i];
}
any[] = 0.0; for(int i=;i<=T;i++){
f[i] = f[i-]*(dp[i][M][M]-dp[i][M][]) + (1.0-f[i-]-any[i-])*(dp[i][M][M]-dp[i][M][N-]);
} printf("%.3f\n",f[T]);
}
return ;
}

[POJ2151]Check the difficulty of problems (概率dp)的更多相关文章

  1. [poj2151]Check the difficulty of problems概率dp

    解题关键:主要就是概率的推导以及至少的转化,至少的转化是需要有前提条件的. 转移方程:$dp[i][j][k] = dp[i][j - 1][k - 1]*p + dp[i][j - 1][k]*(1 ...

  2. POJ 2151 Check the difficulty of problems 概率dp+01背包

    题目链接: http://poj.org/problem?id=2151 Check the difficulty of problems Time Limit: 2000MSMemory Limit ...

  3. [ACM] POJ 2151 Check the difficulty of problems (概率+DP)

    Check the difficulty of problems Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4748   ...

  4. POJ 2151 Check the difficulty of problems (概率DP)

    题意:ACM比赛中,共M道题,T个队,pij表示第i队解出第j题的概率 ,求每队至少解出一题且冠军队至少解出N道题的概率. 析:概率DP,dp[i][j][k] 表示第 i 个队伍,前 j 个题,解出 ...

  5. POJ2157 Check the difficulty of problems 概率DP

    http://poj.org/problem?id=2151   题意 :t个队伍m道题,i队写对j题的概率为pij.冠军是解题数超过n的解题数最多的队伍之一,求满足有冠军且其他队伍解题数都大于等于1 ...

  6. POJ2151Check the difficulty of problems 概率DP

    概率DP,还是有点恶心的哈,这道题目真是绕,问你T个队伍.m个题目.每一个队伍做出哪道题的概率都给了.冠军队伍至少也解除n道题目,全部队伍都要出题,问你概率为多少? 一開始感觉是个二维的,然后推啊推啊 ...

  7. POJ-2151 Check the difficulty of problems---概率DP好题

    题目链接: https://vjudge.net/problem/POJ-2151 题目大意: ACM比赛中,共M道题,T个队,pij表示第i队解出第j题的概率 问 每队至少解出一题且冠军队至少解出N ...

  8. poj 2151Check the difficulty of problems<概率DP>

    链接:http://poj.org/problem?id=2151 题意:一场比赛有 T 支队伍,共 M 道题, 给出每支队伍能解出各题的概率~  求 :冠军至少做出 N 题且每队至少做出一题的概率~ ...

  9. 【POJ】2151:Check the difficulty of problems【概率DP】

    Check the difficulty of problems Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8903   ...

随机推荐

  1. jQuery元素查找方式

    jQuery常用的元素查找方法总结 $("#myELement")    选择id值等于myElement的元素,id值不能重复在文档中只能有一个id值是myElement所以得到 ...

  2. K-Means 聚类算法原理分析与代码实现

    前言 在前面的文章中,涉及到的机器学习算法均为监督学习算法. 所谓监督学习,就是有训练过程的学习.再确切点,就是有 "分类标签集" 的学习. 现在开始,将进入到非监督学习领域.从经 ...

  3. Android使用AudioTrack发送红外信号

    最近要做一个项目,利用手机的耳机口输出红外信号,从而把手机变成红外遥控器,信号处理的知识基本都还给老师了,刚开始真的挺头疼.找了不少资料研究了一下,总算有点心得,在这里做个备忘. 一.音频信号输出原理 ...

  4. 修改oracle实例名orcl为demo

    修改oracle实例名有六步: 1.sqlplus username/password as sysdba登陆,然后从spfile文件创建pfile文件 :create pfile from spfi ...

  5. create dll project based on the existing project

    Today, I have to create a dll project(called my.sln), the dllmain.cpp/.h/ is already in another proj ...

  6. shiro中的filterChainDefinitions

    anno:对所有请求放行 logout:立刻退出当前登录用户,并重定向到指定redirectUrl,如果没有指定redirectUrl,貌似是默认重定向到登录页面. authc:当访问需要通过权限验证 ...

  7. LINUX中如何查看某个进程打开的网络链接有多少

    使用lsof命令,比如查看sshd这个程序的网络连接使用命令 lsof -i | grep ^sshd

  8. php7 编译安装 apache

    http://blog.csdn.net/21aspnet/article/details/47708763 根据此教程的步骤但是碰到了若干问题 1.  执行./configure的时候报错 大部分可 ...

  9. 经验分享:Linux 双网卡 不同网段 网络互通

    环境如下: 现状:一台linux主机上有两个网卡eth0 和eth1 ,机器能访问192网的服务资源,但不能访问10网段的资源. 要求:linux能通过eth1访问10网段的资源 路由: 网卡: 操作 ...

  10. Java创建树形结构算法实例

    在JavaWeb的相关开发中经常会涉及到多级菜单的展示,为了方便菜单的管理需要使用数据库进行支持,本例采用相关算法讲数据库中的条形记录进行相关组装和排序讲菜单组装成树形结构. 首先是需要的JavaBe ...