//Accepted    1812 KB    514 ms
/*
    source:hdu4067
    time  :20150816
    by    :songt
  */
/*题解:网络流
首先我们贪心建图:对于u到v的一条边,保留的费用为a,删除的费用为b
用sum记录我们的花费;
即对于(u,v,a,b),如果
    1.a<=b 那么说明保留的花费更小,我们选择保留这条边,那么in[v]++,out[u]++ (in,out表示点的入度和出度),sum+=a
    但是如果我们需要删除这条边的话,那么我们需要需要选择边(v,u,b-a);所以建边(v,u,1,b-a)
    2.a>b 那么说明删除的花费更小,我们选择删除这条边,那么sum+=b
    但是如果我们需要保留这条边的话,那么我们需要选择边(u,v,a-b),所以建边(u,v,1,a-b)

    这样对于每一个顶点,如果选择了一条和他相连的出边,那么这个顶点的出度就会加1,如果选择了一条和他相连的入边,
    那么和这个顶点相连的入度就会加1,所以下面我们只需要通过选边来平衡每个节点的入度和出度就好了。

    由于s,和t的要求,我们可以先把s的入度+1,t的出度+1,这样他们和其他点一样平衡就好了

    增加超级源点src和汇点des
    对于每个点i有:
    1.in[i]>out[i],说明点i的入度更大,需要选择出去的边,所以我们从src向i建边,容量为需要平衡的in[i]-out[i]
    2.in[i]<=out[i],说明点i的出度更大,需要选择入边,所以我们从i向des建边,容量为需要平衡的out[i]-in[i]

    这样,就可以通过一遍费用流来需找最小需要平衡的费用cost,ans=sum+cost
    如果图的网络流不能平衡所有的节点的话,那么无解。(flow!=sum(src),最大流不等于从src出边的流量和)

  */
#include <cstdio>
#include <cstring>
#include<algorithm>
#include<queue>
#include<vector>

#define INF 1e9
using namespace std;
*;

struct Edge
{
    int from,to,cap,flow,cost;
    Edge(){}
    Edge(int f,int t,int c,int fl,int co):from(f),to(t),cap(c),flow(fl),cost(co){}
};

struct MCMF
{
    int n,m,s,t;
    vector<Edge> edges;
    vector<int> G[maxn];
    bool inq[maxn];
    int d[maxn];
    int p[maxn];
    int a[maxn];

    void init(int n,int s,int t)
    {
        this->n=n, this->s=s, this->t=t;
        edges.clear();
        ;i<n;++i) G[i].clear();
    }

    void AddEdge(int from,int to,int cap,int cost)
    {
        edges.push_back(Edge(,cost));
        edges.push_back(Edge(to,,,-cost));
        m=edges.size();
        G[);
        G[to].push_back(m-);
    }

    bool BellmanFord(int &flow,int &cost)
    {
        queue<int> Q;
        ;i<n;++i) d[i]=INF;
        memset(inq,,sizeof(inq));
        Q.push(s),inq[s]=,a[s]=INF,p[s]=;

        while(!Q.empty())
        {
            int u=Q.front(); Q.pop();
            inq[u]=false;
            ;i<G[u].size();++i)
            {
                Edge &e=edges[G[u][i]];
                if(e.cap>e.flow && d[e.to]>d[u]+e.cost)
                {
                    d[e.to]=d[u]+e.cost;
                    a[e.to]=min(a[u],e.cap-e.flow);
                    p[e.to]=G[u][i];
                    if(!inq[e.to]){inq[e.to]=true; Q.push(e.to);}
                }
            }
        }
        if(d[t]==INF) return false;
        flow += a[t];
        cost += a[t]*d[t];
        int u=t;
        while(u!=s)
        {
            edges[p[u]].flow +=a[t];
            edges[p[u]^].flow -=a[t];
            u=edges[p[u]].from;
        }
        return true;
    }

    int solve(int &cost)
    {
        ;
        cost=;
        while(BellmanFord(flow,cost));
        return flow;
    }
}MM;

int in[maxn],out[maxn];

void Deal()
{
    int n,m,s,t;
    int u,v,a,b;
    ;
    memset(,sizeof(in));
    memset(,sizeof(out));
    scanf("%d%d%d%d",&n,&m,&s,&t);
    ;
    ;
    MM.init(des+,src,des);
    ;i<m;i++)
    {
        scanf("%d%d%d%d",&u,&v,&a,&b);
        if (a<=b)
        {
            MM.AddEdge(v,u,,b-a);
            in[v]++;
            out[u]++;
            sum+=a;
        }
        else
        {
            sum+=b;
            MM.AddEdge(u,v,,a-b);
        }
    }
    in[s]++,out[t]++;
    ;
    ;i<=n;i++)
    {
        ),tmp+=in[i]-out[i];
        );
    }
    int cost;
    int ans=MM.solve(cost);
    if (ans!=tmp)
    {
        printf("impossible\n");
    }
    else
    {
        printf("%d\n",sum+cost);
    }
}

int main()
{
    int T;
    ;
    scanf("%d",&T);
    while (T--)
    {
        printf("Case %d: ",++t);
        Deal();
    }
    ;
}

hdu4067的更多相关文章

  1. HDU4067 Random Maze(最小费用最大流)

    题目大概说,给一张图,删除其中一些单向边,使起点s出度比入度多1,终点t入度比出度多1,其他点出度等于入度.其中删除边的费用是bi,保留边的费用是ai,问完成要求最小的费用是多少. 一开始我想到和混合 ...

  2. hdu4067 费用流(混合欧拉的宽展和延伸)

    题意:        给以一个图,每个有向边都有两个权值,a,b其中a是保留这条边的花费,b是删除这条边的花费,让你删去一些边使图满足一下要求: (1)只有一个起点和一个终点 (2)所有的边都是又向的 ...

随机推荐

  1. hdu acm 简单暴力1004

    字符串匹配函数strcmp 直接使用来判断两字符串是否完全相等 用数组存每个单词的个数时  初始化为零就错 初始化为一时就正确  也不知道为什么

  2. shell下>和>>的区别

    >  :如果文件不存在,同上,如果文件存在,先将文件清空,然后将数据填入此文件 >> :如果文件不存在,将创建新的文件,并将数据送至此文件:如果文件存在,则将数据添加在文件后面

  3. Forward和Redirect的区别

    一:间接请求转发(Redirect) 二:直接请求转发(Forward) 用户向服务器发送了一次HTTP请求,该请求可能会经过多个信息资源处理以后才返回给用户,各个信息资源使用请求转发机制相互转发请求 ...

  4. [C语言入门笔记]分支结构与数组

    分支结构与数组 什么是分支结构? 分支结构是用户或者程序可以选择下一步执行哪个语句 分支结构有哪些? If If Else If Else If Switch 在初学者的学习过程中第一种和第二种比较普 ...

  5. SPSS数据分析—多维尺度分析

    在市场研究中,有一种分析是研究消费者态度或偏好,收集的数据是某些对象的评分数据,这些评分数据可以看做是对象间相似性或差异性的表现,也就是一种距离,距离近的差异性小,距离远的差异性大.而我们的分析目的也 ...

  6. git配置笔记

    windows: 1. PS>ssh-keygen -t rsa -C "your_email@youremail.com" ssh-keygen命令报错--无法将“ssh- ...

  7. Windows 2008 R2+iis7.5环境下Discuz!X3论坛伪静态设置方法

    2008R2不是那么的普及,加上X3版新出不久,所以伪静态的设置教程比较少,今天搞出来了,其实很简单,那么下面给大家简要说明一下.因为iis7.5集成了url重写,那就就方便多了,首先安装好你的dz论 ...

  8. 关于vs调试中kaze时出现的问题

    在kaze程序中,调试时,会出现内存释放出现问题,导致调试失败. 解决方法:将主函数所在的源文件中的所有函数中的vector声明的向量都放在主函数外面,成为全局变量,让系统自己释放,再次调试就不会出现 ...

  9. Microsoft.Office.Interop.Excel操作Excel文件时出现的问题及解决方案

    问题描述: Microsoft.Office.Interop.Excel.Worksheet 打不开文件 Microsoft Office Excel 不能访问文件"a.xls". ...

  10. free

    free是查看内存的命令 1             2                   3                4           5                61      ...