Theano入门神经网络(二) 实现一个XOR门
与非门的图片如下
示意图
详细解释:
1 定义变量的代码,包括了输入、权值、输出等。其中激活函数采用的是sigmod函数
# -*- coding: utf-8 -*-
__author__ = 'Administrator' import theano
import theano.tensor as T
import random
import numpy as np
from itertools import izip #定义网络结构
#定义输入
x=T.vector()
#定义权值W1
w1=theano.shared(np.random.randn(2)) #生成一个1行2列的随机数
w2=theano.shared(np.random.randn(2))
b1=theano.shared(np.random.randn(1))
b2=theano.shared(np.random.randn(1))
z1=T.dot(w1,x)+b1
a1=1/(1+T.exp(-z1))
z2=T.dot(w2,x)+b2
a2=1/(1+T.exp(-z2)) w=theano.shared(np.random.randn(2))
b=theano.shared(np.random.randn(1))
z=T.dot(w,[a1,a2])+b
y=1/(1+T.exp(-z))
2 定义目标输出和损失函数计算方式,我们采用的平方损失
y_hat = T.scalar()#正确输出
cost = T.sum((y-y_hat)**2) #采用的是平方损失函数
另外也可以采用交叉熵损失函数
cost = - (y_hat*T.log(y)+(1-y_hat)*T.log(1-y)).sum() #采用交叉熵损失函数
3 误差反向传播求导,直接调用theano函数求解,方便快捷
#误差反向传播求导
dw,db,dw1,dw2,db1,db2= T.grad(cost,[w,b,w1,w2,b1,b2])
4 权值更新
#手动定义一个权值更新函数
def MyUpdate(paramters,gradients):
mu=0.1 #步长
paramters_updates= \
[(p, p-mu*g) for p,g in izip(paramters,gradients)]
return paramters_updates #绑定输入、输出与权值更新函数
g = theano.function(
inputs=[x,y_hat],
outputs=[y,cost],
updates=MyUpdate([w,b,w1,w2,b1,b2],[dw,db,dw1,dw2,db1,db2])
)
5 开始训练
for i in range(50000):
y1,c1=g([0,0],0)
y2,c2=g([0,1],1)
y3,c3=g([1,0],1)
y4,c4=g([1,1],0)
print c1+c2+c3+c4
print y1,y2,y3,y4
6 结果输出:
0.000541548001074
[ 0.01069522] [ 0.98782012] [ 0.98784247] [ 0.01144574]
0.000541536246431
[ 0.01069511] [ 0.98782025] [ 0.9878426] [ 0.01144562]
可以看到,每一项都接近[0 1 1 0],网络已经成功训练了。
交叉熵的结果输出
0.00187006124627
[ 0.00044582] [ 0.99958399] [ 0.99938235] [ 0.00039013]
相同参数下,很明显交叉熵的结果更好!
Theano入门神经网络(二) 实现一个XOR门的更多相关文章
- Theano入门神经网络(一)
Theano是一个Python库,专门用于定义.优化.求值数学表达式,效率高,适用于多维数组.特别适合做机器学习.一般来说,使用时需要安装python和numpy. 首先回顾一下机器学习的东西,定义一 ...
- Theano入门神经网络(三)
附录一个:Keras学习随笔 http://blog.csdn.net/niuwei22007/article/details/49045909 参考 <Python Machine Learn ...
- Theano入门神经网络(四)
这一部分主要介绍用Theano 实现softmax函数. 在多分类任务中经常用到softmax函数,首先上几个投影片解释一下 假设目标输出是y_hat ,激活函数后的Relu y 一个是1.2 一个是 ...
- GitHub入门之二 参与一个项目编写
接上文:大多数时候我们也需要把别人的代码进行整合和修改,而不是简单的修改,这时就需要对一个项目进行修改. 注意,本系列文章主要说明在github网站上的操作,更多高级操作请使用git控制台 一.for ...
- 几个NAND/NOR门可以表示一个XOR门?
这段时间就是在看测试相关的东西,无意之中发现了ISCAS85中有个名词EXOR,愣了一下反应过来应该还是异或门,毕竟叫exclusive-OR gate,其中文档中还提到了一句一个异或门可以由四个与非 ...
- 无废话MVC入门教程二[第一个小Demo]
mvc技术交流,欢迎加群: 本文目标 1.了解"模型"."视图"."控制器"的创建.调试和使用过程. 本文目录 1.创建模型 2.创建视图 ...
- MVC入门教程二[第一个小Demo](转载)
本文目标 1.了解"模型"."视图"."控制器"的创建.调试和使用过程. 本文目录 1.创建模型 2.创建视图 3.创建控制器 4.调试 5 ...
- Asp.Net MVC4.0 官方教程 入门指南之二--添加一个控制器
Asp.Net MVC4.0 官方教程 入门指南之二--添加一个控制器 MVC概念 MVC的含义是 “模型-视图-控制器”.MVC是一个架构良好并且易于测试和易于维护的开发模式.基于MVC模式的应用程 ...
- 网络流量预测入门(二)之LSTM介绍
目录 网络流量预测入门(二)之LSTM介绍 LSTM简介 Simple RNN的弊端 LSTM的结构 细胞状态(Cell State) 门(Gate) 遗忘门(Forget Gate) 输入门(Inp ...
随机推荐
- [Xamarin] 從Xamarin中呼叫 *.jar 的 library -建立.jar篇 (转帖)
嗯,這篇我們來聊聊如何從Xamarin 中來呼叫,已經包好的.jar ,首先因為要讓測試順利,我們開一個Android Java 的專案 當然是Eclipse ,然後我們簡簡單單寫一個測試用的libr ...
- Grpc微服务从零入门
快速入门 安装 JDK 毫无疑问,要想玩Java,就必须得先装Java JDK,目前公司主要使用的是Oracle JDK 8,安装完成后要配置环境才能正常使用,真蠢,不过也就那么一下下,认了吧.配置方 ...
- 可在广域网部署运行的QQ高仿版 -- GG叽叽(源码)
前段时间看到园子里有朋友开发了QQ高仿版的程序,我也非常有兴趣,以前一直有个做即时聊天程序的梦,趁这段时间工作不是很忙,就开始动手来做这个事情.根据我以往积累下来的项目经验,实现QQ的基本功能,问题应 ...
- FTP文件管理
因为网站有下载文件需要和网站分离,使用到了FTP管理文件,这里做一个简单的整理. 1.安装FTP 和安装iis一样.全部勾选. 设置站点名称和路径. 设置ip. 身份授权选择所有用户,可以读写. 完成 ...
- 【吉光片羽】奇怪的Bug-细节的问题
这几天用Winform开发了一个小界面,遇到几个奇怪的问题,记录一下. 1.背景图片漏光. 当时很是奇怪,以为是图片的问题,让美工重新发,改成jpg也都存在.很是奇怪,原图这个地方肉眼看是不透明的,而 ...
- 解决SQLSERVER数据库表被琐死!
) ) BEGIN Exec (@spId) FETCH NEXT FROM TmpCursor INTO @spId END CLOSE TmpCursor DEALLO ...
- HTML、CSS部分
要点:对Web标准的理解.浏览器差异.CSS基本功:布局.盒子模型.选择器优先级及使用.HTML5.CSS3.移动端开发 技术等 1.Doctype作用? 严格模式与混杂模式-如何触发这两种模式,区分 ...
- Linux常用命令(转)
源自:http://www.linuxidc.com/Linux/2011-08/40437.htm Linux管理文件和目录的命令 命令 功能 命令 功能 pwd 显示当前目录 ls 查看目录下的内 ...
- js笔记——js异常处理
异常捕获 try...catch结构: try { //需要捕获的代码块 } catch (e) { console.log(e.name + ": " + e.message); ...
- [Java面试十一]数据库总结.
问题及描述: --1.学生表 Student(SID,Sname,Sage,Ssex) --SID 学生编号,Sname 学生姓名,Sage 出生年月,Ssex 学生性别 --2.课程表 Course ...