Acwing199 余数之和
原题面:https://www.acwing.com/problem/content/201/
题目大意:给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值。例如j(5, 3)=3 mod 1 + 3 mod 2 + 3 mod 3 + 3 mod 4 + 3 mod 5=0+1+0+3+3=7。
输入描述:输入仅一行,包含两个整数n, k。
输出描述:输出仅一行,即j(n, k)。
输入样例:
输出样例:
分析:k%i=k-[k/i]i,所以原式可以化简为nk-(1<=i<=n)[k/i]*i。反正最后划来划去可以得到[x,[k/[k/x]]]区间内,[k/i]的值都相等。最后就是多个等差数列求和的问题。
代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int main() {
ll n, k;
scanf("%lld%lld", &n, &k);
ll ans = n * k;
for (int x = , gx; x <= n; x = gx + ) {
gx = k / x ? min(k / (k / x), n) : n;
//[x,[k/[k/x]]]
ans -= (k / x) * (x + gx) * (gx - x + ) / ;//第一项为(k/x)*x*(gx-x+1),最后一项为(k/x)*gx*(gx-x+1),此为一个等差数列区间
}
cout << ans << endl;
return ;
}
Acwing199 余数之和的更多相关文章
- BZOJ 1257: [CQOI2007]余数之和sum
1257: [CQOI2007]余数之和sum Time Limit: 5 Sec Memory Limit: 162 MBSubmit: 3769 Solved: 1734[Submit][St ...
- 【BZOJ1257】【CQOI2007】余数之和sum
Description 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod i表示k除以i的余数.例如j(5, ...
- 51nod1225 余数之和
打表可以看出规律.分块求就可以了. #include<cstdio> #include<cstring> #include<cctype> #include< ...
- [原博客] BZOJ 1257 [CQOI2007] 余数之和
题目链接题意: 给定n,k,求 ∑(k mod i) {1<=i<=n} 其中 n,k<=10^9. 即 k mod 1 + k mod 2 + k mod 3 + … + k mo ...
- bzoj 1257: [CQOI2007]余数之和sum 数学 && 枚举
1257: [CQOI2007]余数之和sum Time Limit: 5 Sec Memory Limit: 162 MBSubmit: 1779 Solved: 823[Submit][Sta ...
- BZOJ 1257: [CQOI2007]余数之和sum( 数论 )
n >= k 部分对答案的贡献为 k * (n - k) n < k 部分贡献为 ∑ (k - ⌊k / i⌋ * i) = ∑ , ⌊k / i⌋ 相等的数是连续的一段, 此时这段连 ...
- 1257: [CQOI2007]余数之和sum
1257: [CQOI2007]余数之和sum Time Limit: 5 Sec Memory Limit: 162 MBSubmit: 2001 Solved: 928[Submit][Sta ...
- BZOJ 1257: [CQOI2007]余数之和sum【神奇的做法,思维题】
1257: [CQOI2007]余数之和sum Time Limit: 5 Sec Memory Limit: 162 MBSubmit: 4474 Solved: 2083[Submit][St ...
- 51Nod 1225 余数之和 [整除分块]
1225 余数之和 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 收藏 关注 F(n) = (n % 1) + (n % 2) + (n % 3) + ... ...
随机推荐
- Java记录2---包的使用
javac -d . A.java -d 表示自动生成包层 . 表示这个包层在当前目录下建立 package link.roland;//package 语句必须是第一条语句 //该语句表示把该文件中 ...
- gensim加载词向量文件
# -*- coding: utf-8 -*- # author: huihui # date: 2020/1/31 7:58 下午 ''' 根据语料训练词向量,并保存向量文件 ''' import ...
- FiBiNET-学习
Our main contributions are listed as follows: • Inspired by the success of SENET in the computer vis ...
- 各颜色LED压降
一下是参考1.直插LED压降红:2.0-2.2V黄:1.8-2.0V绿:3.0-3.2V 额定电流约20mA.2.贴片LED压降红:1.82-1.88V,电流5-8mA绿:1.75-1.82V,3-5 ...
- 【PAT甲级】1021 Deepest Root (25 分)(暴力,DFS)
题意: 输入一个正整数N(N<=10000),然后输入N-1条边,求使得这棵树深度最大的根节点,递增序输出.如果不是一棵树,输出这张图有几个部分. trick: 时间比较充裕数据可能也不是很极限 ...
- redhat 7.6 find 命令
1.按名字查找 find ./ -name filename //精确查找 ,./ 代表当前目录 -name 查询名称 filename具体文件名称 find ./ -na ...
- 浏览器输入URL后HTTP请求返回的完整过程
图:
- Oracle常用命令复习(备考资料)
Oracle期末考试复习资料,大概的总结了常用的命令,不包括基础理论知识,有的不太考的东西没有整理.资料整理是在有道云笔记里完成的,在这里重新编辑太麻烦了,就附个链接了. 文档:Oracle命令复习2 ...
- 那些年我们踩过的坑,SQL 中的空值陷阱!
文章目录 NULL 即是空 三值逻辑 空值比较 NOT IN 与空值 函数与空值 DISTINCT.GROUP BY.UNION 与空值 ORDER BY 与空值 空值处理函数 字段约束与空值 SQL ...
- OC中NSLog函数输出格式罗列
格式 类型 格式 类型 格式 类型 %@ 对象 %d,%i 整数 %u 无符整数 %f 浮点 %x,%X 二进制整数 %o 八进制整数 %zu size_t %p 指针 %e 浮点(科学计算) %g ...