题目描述

Farmer John has taken his cows on a trip to the city! As the sun sets, the cows gaze at the city horizon and observe the beautiful silhouettes formed by the rectangular buildings.

The entire horizon is represented by a number line with N (1 ≤ N ≤ 40,000) buildings. Building i's silhouette has a base that spans locations Ai through Bi along the horizon (1 ≤ Ai < Bi ≤ 1,000,000,000) and has height Hi (1 ≤ Hi ≤ 1,000,000,000). Determine the area, in square units, of the aggregate silhouette formed by all N buildings.

约翰带着奶牛去都市观光。在落日的余晖里,他们看到了一幢接一幢的摩天高楼的轮廓在地平线 上形成美丽的图案。以地平线为 X 轴,每幢高楼的轮廓是一个位于地平线上的矩形,彼此间可能有 重叠的部分。奶牛一共看到了 N 幢高楼,第 i 幢楼的高度是 Hi,两条边界轮廓在地平线上的坐标是 Ai 到 Bi。请帮助奶牛们计算一下,所有摩天高楼的轮廓覆盖的总面积是多少。

输入输出格式

输入格式

第一行一个整数N,然后有N行,每行三个正整数ai、bi、Hi。

输出格式

一个数,数列中所有元素的和。

样例

INPUT

4

2 5 1

9 10 4

6 8 2

4 6 3

OUTPUT

16

HINT

N<=40000 , a、b、k<=10^9 。

SOLUTION

离散化+线段树

瞄一眼数据范围,不用想就知道一定要离散化,对于我来说这种离散化方法还是头一次用(就是这离散化调得我大头疼。)然后区间最大值?果断线段树啊。

其实对于题目给定的\(a_i,b_i\)画个图就可以看出来,由于我们线段树处理的是点,所以我们只要覆盖\(a_i\)到\(b_i-1\)的点就行了。

而且因为对于每一段区间我们保留的是最大的\(h\),所以只要再修改以前,以\(h\)为关键字,再对每栋楼从小到大排个序就可以直接覆盖了。

如何计算呢?

因为我们离散化之后就剩下了一堆关键点\(p\),然后对于每一个\(p_i\)只要把\(i\)点的高度乘以\((p_{i+1}-p_i)\)(前面有说,因为不包括右端点)就可以得到面积了。

然后记得push_down的时候一定要先判断\(s[id]\)是否非零,不然就把原来存在的值清除了。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
using namespace std;
typedef long long LL;
const int N=40100;
int n,p[N<<1],s[N<<3];
LL ans=0;
struct BD{int a,b,h;}bld[N];
inline int read(){
int x=0,f=1;char ch=getchar();
while (ch<'0'||ch>'9') {if (ch=='-') f=-1;ch=getchar();}
while (ch>='0'&&ch<='9') {x=x*10+ch-48;ch=getchar();}
return x*f;}
bool cmp(BD x,BD y) {return x.h<y.h;}
void pushdown(int id,int l,int r){
if (l==r) return;
s[id<<1]=s[id];s[id<<1|1]=s[id];s[id]=0;}
void change(int id,int l,int r,int L,int R,int H){
if (s[id]) pushdown(id,l,r);
if (l>=L&&r<=R) {s[id]=H;return;}
int mid=(l+r)>>1;
if (mid>=L) change(id<<1,l,mid,L,R,H);
if (mid<R) change(id<<1|1,mid+1,r,L,R,H);
}
int findh(int id,int l,int r,int ND){
if (l==r) {return s[id];}
if (s[id]) pushdown(id,l,r);
int mid=(l+r)>>1;
if (mid>=ND) return findh(id<<1,l,mid,ND);
else return findh(id<<1|1,mid+1,r,ND);
}
int main(){
int i,j;
n=read();for (i=1;i<=n;++i) {
bld[i].a=read();bld[i].b=read();bld[i].h=read();
p[i*2-1]=bld[i].a;p[i*2]=bld[i].b;}
sort(p+1,p+1+2*n);
int cnt=2*n;//int cnt=unique(p+1,p+1+2*n)-p;
sort(bld+1,bld+1+n,cmp);
memset(s,0,sizeof(s));
for (i=1;i<=n;++i){
int L=lower_bound(p+1,p+1+cnt,bld[i].a)-p;
int R=lower_bound(p+1,p+1+cnt,bld[i].b)-p;
// printf("L:%d R:%d H:%d\n",L,R-1,bld[i].h);
change(1,1,cnt,L,R-1,bld[i].h);
}
for (i=1;i<cnt;++i){
LL H=findh(1,1,cnt,i);
ans=ans+H*(p[i+1]-p[i]);
// printf("%lld %d;",H,(p[i+1]-p[i]));
// printf("%d %d\n",p[i],p[i+1]);
}
printf("%lld\n",ans);
return 0;
}

Luogu_2061_[USACO07OPEN]城市的地平线City Horizon的更多相关文章

  1. bzoj1645 / P2061 [USACO07OPEN]城市的地平线City Horizon(扫描线)

    P2061 [USACO07OPEN]城市的地平线City Horizon 扫描线 扫描线简化版 流程(本题为例): 把一个矩形用两条线段(底端点的坐标,向上长度,添加$or$删除)表示,按横坐标排序 ...

  2. 线段树+扫描线【bzoj1645】[USACO07OPEN]城市的地平线City Horizon

    Description 约翰带着奶牛去都市观光.在落日的余晖里,他们看到了一幢接一幢的摩天高楼的轮廓在地平线 上形成美丽的图案.以地平线为 X 轴,每幢高楼的轮廓是一个位于地平线上的矩形,彼此间可能有 ...

  3. [题目] luogu P2061 [USACO07OPEN]城市的地平线City Horizon

    算法 线段树 + 离散化 思路 对\((x,y,h)\)的左右端点\(x,y\)进行离散化,离散化前的原值记为\(val[i]\),对每个矩形按高度\(h\)从小到大排序. 设离散化后的端点有\(M\ ...

  4. 洛谷 P2061 [USACO07OPEN]城市的地平线City Horizon

    简化版的矩形面积并,不用线段树,不用离散化,代码意外的简单 扫描线,这里的基本思路就是把要求的图形竖着切几刀分成许多矩形,求面积并.(切法就是每出现一条与y轴平行的线段都切一刀) 对于每一个切出来的矩 ...

  5. 1645: [Usaco2007 Open]City Horizon 城市地平线

    1645: [Usaco2007 Open]City Horizon 城市地平线 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 315  Solved: ...

  6. BZOJ_1654_[Usaco2007 Open]City Horizon 城市地平线_扫描线

    BZOJ_1654_[Usaco2007 Open]City Horizon 城市地平线_扫描线 Description N个矩形块,交求面积并. Input * Line 1: A single i ...

  7. 【BZOJ1645】[Usaco2007 Open]City Horizon 城市地平线 离散化+线段树

    [BZOJ1645][Usaco2007 Open]City Horizon 城市地平线 Description Farmer John has taken his cows on a trip to ...

  8. bzoj1645 [Usaco2007 Open]City Horizon 城市地平线

    Description Farmer John has taken his cows on a trip to the city! As the sun sets, the cows gaze at ...

  9. 【BZOJ】1645: [Usaco2007 Open]City Horizon 城市地平线(线段树+特殊的技巧)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1645 这题的方法很奇妙啊...一开始我打了一个“离散”后的线段树.............果然爆了. ...

随机推荐

  1. coures包下载和安装 可解决报错ImportError: No module named '_curses'

    http://blog.csdn.net/liyaoqing/article/details/54949253 coures curses 库 ( ncurses )提供了控制字符屏幕的独立于终端的方 ...

  2. docker---设置镜像加速器

    国内从 Docker Hub 拉取镜像有时会遇到困难,此时可以配置镜像加速器,国内很多云服务商都提供了国内加速器服务,如: Azure 中国镜像: https://dockerhub.azk8s.cn ...

  3. oracle的用户、权限、表空间的管理

    1.创建表空间 create tablespace test1_tablespace datafile 'test1file.dbf' size 10m; 2.创建临时表空间 create tempo ...

  4. mui + H5 调取摄像头和相册 实现图片上传

    最近要用MUI做项目,在研究图片上传时 ,遇到了大坑 ,网上搜集各种资料,最终写了一个demo,直接看代码.参考(http://www.cnblogs.com/richerdyoung/p/66123 ...

  5. quartz定时定时任务执行两次

    quartz框架没问题. 流程: sping-quartz配置 <?xml version="1.0" encoding="UTF-8"?> < ...

  6. 用FFmpeg+nginx+rtmp搭建环境实现推流

    Windows: 1.下载文件: 链接:https://pan.baidu.com/s/1c2LmIHHw-dwLOlRN6iTIMg 提取码:g7sj 2.解压文件: 解压到nginx-1.7.11 ...

  7. python字符串——"奇葩“的内置函数

      一.前言 python编程语言里的字符串与我们初期所学的c语言内的字符串还是有一定不同的,比如python字符串里的内置函数就比语言的要多得多:字符串内的书写格式也会有一点差异,例:字符串内含有引 ...

  8. 基于Flask框架搭建视频网站的学习日志(六)之数据库

    使用Flask-SQLSlchemy管理数据库(1)--初步安装调试 一.介绍: Flask-SQLSlchemy是一个Flask扩展,简化了Flask中对sql的操作,是一个高层的框架,可以避免直接 ...

  9. springmvc 实现文件上传

    1.添加jar包 <dependency> <groupId>commons-io</groupId> <artifactId>commons-io&l ...

  10. [概率DP]相逢是温厚

    题意 有\(n\)场比赛,他每次等概率地选择一场,选择的比赛可能有没ac过的题,他一定会ac这次比赛中的某一道,并说我好菜啊.如果全ac过了,也会说我好菜啊.求期望说多少次我好菜啊. 注意题目中每场题 ...