[日常摸鱼]UVA11424&11426 GCD - Extreme
话说UVa的机子跑的好快呀…
(两题题意一样,前一题数据范围比较小)
题意:求$\sum_{i=1}^{n-1} \sum_{j=i+1}^n gcd(i,j),n<4\times 10^6$
转换一下变成$\sum_{i=2}^{n} \sum_{j=1}^{i-1} gcd(i,j)$,这个形式我们可以设$f(n)=\sum_{i=1}^{n-1} gcd(i,n)$原答案$ans(n)=\sum_{i=2}^{n}f(i)$
考虑如何快速求$f(n)$,根据约数进行分类,对于$n$的一个约数$i$,容易发cai现dao出现的次数是$\phi(\frac{n}{i})$(后来才知道是因为$gcd(x,n)=i$等价于$gcd( \frac{x}{i}, \frac{n}{i})=1$,然后这样的$x$的个数就是$\phi(\frac{n}{i})$了)
经验告诉我们应该预处理出$f(n)$然后递推出所有答案,同样对于$f(n)$我们也得预处理,如果直接对于每个$n$求出约数来统计答案是不太可行的…然后就反过来枚举约数来不断更新$f(n)$
时间复杂度大概是$O(nlogn)$
#include<cstdio>
#include<cstring>
#include<algorithm> const int N= 4000005; typedef long long lint; lint n,tot;
lint pri[N],phi[N],f[N],ans[N];
bool p[N]; inline void init()
{
phi[1]=1;
for(register int i=2;i<N;i++)
{
if(!p[i])
{
pri[++tot]=i;
phi[i]=i-1;
}
for(register int j=1;j<=tot&&i*pri[j]<N;j++)
{
p[i*pri[j]]=1;
if(i%pri[j]==0){phi[i*pri[j]]=phi[i]*pri[j];break;}
else phi[i*pri[j]]=phi[i]*(pri[j]-1);
}
}
} int main()
{
init(); for(register int i=1;i<N;i++)
for(register int j=i*2;j<N;j+=i)f[j]+=i*phi[j/i]; for(register int i=1;i<N;i++)ans[i]=ans[i-1]+f[i]; while(scanf("%lld",&n)==1&&n)
printf("%lld\n",ans[n]); return 0;
}
本地预处理跑了5s…然后交到UVa上居然快的飞起…
[日常摸鱼]UVA11424&11426 GCD - Extreme的更多相关文章
- UVA 11426 - GCD - Extreme (II) (数论)
UVA 11426 - GCD - Extreme (II) 题目链接 题意:给定N.求∑i<=ni=1∑j<nj=1gcd(i,j)的值. 思路:lrj白书上的例题,设f(n) = gc ...
- UVA 11426 GCD - Extreme (II) (欧拉函数)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud Problem JGCD Extreme (II)Input: Standard ...
- UVA 11426 GCD - Extreme (II) (欧拉函数+筛法)
题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=70017#problem/O 题意是给你n,求所有gcd(i , j)的和,其中 ...
- UVA 11426 GCD - Extreme (II) (欧拉函数)题解
思路: 虽然看到题目就想到了用欧拉函数做,但就是不知道怎么做... 当a b互质时GCD(a,b)= 1,由此我们可以推出GCD(k*a,k*b)= k.设ans[i]是1~i-1与i的GCD之和,所 ...
- UVA 11426 GCD - Extreme (II)(欧拉函数打表 + 规律)
Given the value of N, you will have to find the value of G. The definition of G is given below:Here ...
- uva 11426 GCD - Extreme (II) (欧拉函数打表)
题意:给一个N,和公式 求G(N). 分析:设F(N)= gcd(1,N)+gcd(2,N)+...gcd(N-1,N).则 G(N ) = G(N-1) + F(N). 设满足gcd(x,N) 值为 ...
- UVa 11426 - GCD - Extreme (II) 转化+筛法生成欧拉函数表
<训练指南>p.125 设f[n] = gcd(1, n) + gcd(2, n) + …… + gcd(n - 1, n); 则所求答案为S[n] = f[2]+f[3]+……+f[n] ...
- UVA 11426 - GCD - Extreme (II) 欧拉函数-数学
Given the value of N, you will have to find the value of G. The definition of G is given below:G =i< ...
- UVA 11426 GCD - Extreme (II) (数论|欧拉函数)
题意:求sum(gcd(i,j),1<=i<j<=n). 思路:首先能够看出能够递推求出ans[n],由于ans[n-1]+f(n),当中f(n)表示小于n的数与n的gcd之和 问题 ...
随机推荐
- 如何改变CorelDRAW的外观主题皮肤?
CorelDRAW,我们通常也简称为CDR,是一款专业而且使用广泛的矢量图形绘制软件,也常用于绘制图形以及平面设计中.今天我们以CorelDRAW 2020来为大家演示一下,如何改变CorelDRAW ...
- Non Super Boring Substring 题解(hash+思维)
题目链接 题目大意 给你一个长度为d(d<=1e5)的字符串,要你求有多少个子串满足这个子串不包含长度大于等于k的回文子串 题目思路 首先可以hash预处理,然后O(1)用前缀hash值和后缀h ...
- python—数据类型和变量
在python中,能够直接处理的数据类型和变量有整数.浮点数.字符串.布尔值.空值.变量. 一.整数 1.python可处理任意大小的整数,包括负整数,在程序中的表示方法与在数学中的方法一样.例如:0 ...
- 「考试」联赛模拟36-39,noip晚间小测2-3
36.1 party(CF623D) 很是鸡贼的一道题 首先要明确一点,抓人是有策略,而不是随机的,可以认为等同于按一个给定的顺序猜人,那么这时猜中的概率就只是抓住这个人的概率了 对于每一次猜测,因为 ...
- JZOJ2020年10月5日提高B组反思
2020年10月5日提高B组反思 T1 考试的时候想简单了 觉得把跟没有攻占的点相连的边留下就可以了 没有考虑到最小 WA&RE 10 T2 没有思路 就直接从中间往后枚举分解处 蜜汁错误 W ...
- Spring Boot + RabbitMQ 使用示例
基础知识 虚拟主机 (Virtual Host): 每个 virtual host 拥有自己的 exchanges, queues 等 (类似 MySQL 中的库) 交换器 (Exchange): 生 ...
- [Windows] Prism 8.0 入门(上):Prism.Core
1. Prism 简介 Prism 是一个用于构建松耦合.可维护和可测试的 XAML 应用的框架,它支持所有还活着的基于 XAML 的平台,包括 WPF.Xamarin Forms.WinUI 和 U ...
- 第8.4节 Python类中不是构造方法却胜似构造方法的__new方法__深入剖析:语法释义
一. 引言 在本博前面的内容都对构造方法__init__进行了介绍,也在前面章节引入了__new__方法,但老猿认为__new__方法比构造方法__init__更应该属于构造方法.这是因为在Py ...
- 第15.25节 PyQt(Python+Qt)入门学习:Model/View开发实战--使用QTableView展示Excel文件内容
老猿Python博文目录 专栏:使用PyQt开发图形界面Python应用 老猿Python博客地址 一.概述 在前面的订阅专栏<第十九章.Model/View开发:QTableView的功能及属 ...
- HTTP响应报文应答状态码及含义
本应答报文状态码是老猿结合多方资料收集综合后并加以老猿自己的理解进行说明的应答报文状态码,应该是最新最全解释最详尽的,供大家参考: