Educational Codeforces Round 21 

A. Lucky Year

个位数直接输出\(1\)

否则,假设\(n\)十进制最高位的值为\(s\),答案就是\(s-(n\mod s)\)

view code
#pragma GCC optimize("O3")
#pragma GCC optimize("Ofast,no-stack-protector")
#include<bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define LL long long int
#define vi vector<int>
#define vl vector<LL>
#define pb push_back
#define all(V) V.begin(),V.end()
#define sci(x) scanf("%d",&x)
#define scl(x) scanf("%I64d",&x)
#define pii pair<int,int>
#define cmax(a,b) ((a) = (a) > (b) ? (a) : (b))
#define cmin(a,b) ((a) = (a) < (b) ? (a) : (b))
#define debug(x) cerr << #x << " = " << x << endl
function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);}; void solve(){
int a, b; sci(a); b = a;
int t = 0;
LL s = 1;
while(a) t++, a/=10, s *= 10;
s /= 10;
if(t==1) cout << 1 << endl;
else cout << s - (b % s) << endl;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("Local.in","r",stdin);
freopen("ans.out","w",stdout);
#endif
solve();
return 0;
}

B. Average Sleep Time

滑窗算一下就好了

view code
#pragma GCC optimize("O3")
#pragma GCC optimize("Ofast,no-stack-protector")
#include<bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define LL long long int
#define vi vector<int>
#define vl vector<LL>
#define pb push_back
#define all(V) V.begin(),V.end()
#define sci(x) scanf("%d",&x)
#define scl(x) scanf("%I64d",&x)
#define pii pair<int,int>
#define cmax(a,b) ((a) = (a) > (b) ? (a) : (b))
#define cmin(a,b) ((a) = (a) < (b) ? (a) : (b))
#define debug(x) cerr << #x << " = " << x << endl
function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);}; void solve(){
int n, k; sci(n); sci(k);
LL s = 0;
vl A(n);
for(auto &x : A) scl(x);
for(int i = 0; i < k; i++) s += A[i];
LL tt = s;
for(int i = k; i < n; i++){
s += A[i]; s -= A[i-k];
tt += s;
}
cout << fixed << setprecision(10) << 1. * tt / (n - k + 1) << endl;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("Local.in","r",stdin);
freopen("ans.out","w",stdout);
#endif
solve();
return 0;
}

C. Tea Party

为了容易处理,先把所有\(a\)从小到大排序

先让所有值都等于\(\lceil a_i\rceil\),不够用输出\(NO\)

如果有剩下的,从最大的开始把剩下的补进去即可

view code
#pragma GCC optimize("O3")
#pragma GCC optimize("Ofast,no-stack-protector")
#include<bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define LL long long int
#define vi vector<int>
#define vl vector<LL>
#define pb push_back
#define all(V) V.begin(),V.end()
#define sci(x) scanf("%d",&x)
#define scl(x) scanf("%I64d",&x)
#define pii pair<int,int>
#define cmax(a,b) ((a) = (a) > (b) ? (a) : (b))
#define cmin(a,b) ((a) = (a) < (b) ? (a) : (b))
#define debug(x) cerr << #x << " = " << x << endl
function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);}; void solve(){
int n, m;
sci(n); sci(m);
vector<pii> A(n);
vi B(n);
for(auto &x : A) sci(x.first);
for(int i = 0; i < n; i++) A[i].second = i;
sort(all(A));
for(int i = 0; i < n; i++){
B[i] = (A[i].first + 1) / 2;
m -= B[i];
}
if(m<0){
cout << -1 << endl;
return;
}
int x = min(m,A.back().first - B.back());
B.back() += x; m -= x;
for(int i = n - 2; i >= 0; i--){
x = min(m, min(B[i+1],A[i].first) - B[i]);
m -= x; B[i] += x;
}
vi ret(n);
for(int i = 0; i < n; i++) ret[A[i].second] = B[i];
for(int i = 0; i < n; i++) cout << ret[i] << ' ';
}
int main(){
#ifndef ONLINE_JUDGE
freopen("Local.in","r",stdin);
freopen("ans.out","w",stdout);
#endif
solve();
return 0;
}

D. Array Division

维护一个前缀和和后缀和,然后判断是否存在一个数从前缀中放到后缀或者从后缀中放到前缀使得前后缀和相等,用个\(map\)计一下就好了

view code
#pragma GCC optimize("O3")
#pragma GCC optimize("Ofast,no-stack-protector")
#include<bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define LL long long int
#define vi vector<int>
#define vl vector<LL>
#define pb push_back
#define all(V) V.begin(),V.end()
#define sci(x) scanf("%d",&x)
#define scl(x) scanf("%I64d",&x)
#define pii pair<int,int>
#define cmax(a,b) ((a) = (a) > (b) ? (a) : (b))
#define cmin(a,b) ((a) = (a) < (b) ? (a) : (b))
#define debug(x) cerr << #x << " = " << x << endl
function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);}; void solve(){
int n; sci(n);
vi A(n);
for(int &x : A) sci(x);
LL s = accumulate(all(A),0ll);
if(s&1){
cout << "NO" << endl;
return;
}
LL pre = 0;
map<LL,int> s1,s2;
for(int x : A) s2[x]++;
for(int i = 0; i < n; i++){
pre += A[i];
s1[A[i]]++; s2[A[i]]--;
if(s2[A[i]]==0) s2.erase(A[i]);
LL delta = 2 * pre - s;
if(delta==0 or (delta<0 and s2.count(-delta/2)) or (delta>0 and s1.count(delta/2))){
cout << "YES" << endl;
return;
}
}
cout << "NO" << endl;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("Local.in","r",stdin);
freopen("ans.out","w",stdout);
#endif
solve();
return 0;
}

E. Selling Souvenirs

\(w\)比较小,考虑从这里找到解决方法

如果\(w\)只有两种的话直接从大到小排序后枚举一种的数量,然后另一种直接计算就好了

现在\(w\)有三种,那么我们枚举\(w=3\)的,如果暴力枚举\(w=2\)的复杂度会有\(O(n^2)\)

假设我们选完\(w=3\)的之后全选了\(w=1\)的,可以发现我们每次相当于拿一个\(w=2\)的去替换两个\(w=1\)的

考虑最贪心的情况下,肯定是拿值最大的\(w=2\)去替换两个值最小的\(w=1\)的物品

那么我们可以二分这个替换的数量

复杂度\(O(n\log n)\)

view code
#pragma GCC optimize("O3")
#pragma GCC optimize("Ofast,no-stack-protector")
#include<bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define LL long long int
#define vi vector<int>
#define vl vector<LL>
#define pb push_back
#define all(V) V.begin(),V.end()
#define sci(x) scanf("%d",&x)
#define scl(x) scanf("%I64d",&x)
#define pii pair<int,int>
#define cmax(a,b) ((a) = (a) > (b) ? (a) : (b))
#define cmin(a,b) ((a) = (a) < (b) ? (a) : (b))
#define debug(x) cerr << #x << " = " << x << endl
function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);}; void solve(){
int n, m;
sci(n); sci(m);
vl A[3],pre[3];
for(int i = 0; i < n; i++){
int x, y; sci(x); sci(y);
A[x-1].push_back(y);
}
for(int i = 0; i < 3; i++){
sort(all(A[i]),greater<LL>());
A[i].insert(A[i].begin(),0);
partial_sum(all(A[i]),back_inserter(pre[i]));
}
while(A[0].size()<=m){
A[0].push_back(0);
pre[0].push_back(pre[0].back());
}
LL ret = 0;
for(int i = 0; i < A[2].size() and i <= m / 3; i++){
LL sum = pre[2][i];
int lft = m - 3 * i;
if(A[1].size()==1){
ret = max(ret,sum+pre[0][lft]);
continue;
}
int l = 1, r = min((int)A[1].size()-1,lft/2);
while(l<=r){
int mid = (l + r) >> 1;
if(A[1][mid]>A[0][lft-(mid-1)*2]+A[0][lft-(mid-1)*2-1]) l = mid + 1;
else r = mid - 1;
}
ret = max(ret,sum + pre[1][r] + pre[0][lft-2*r]);
}
cout << ret << endl;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("Local.in","r",stdin);
freopen("ans.out","w",stdout);
#endif
solve();
return 0;
}

F. Card Game

除了\(2\)以外的所有偶数都不是素数

并且显然我们不会取两张编号为\(1\)的卡

所以我们把所有可以用的卡片按编号的奇偶分成两部分,如果和为素数就连边,可以发现这是一张二分图

源点向所有偶数点连边,容量为价值,所有奇数点向汇点连边,容量为价值,不能同时存在的两个点连容量为\(INF\)的边

那么可以得到的最大价值和就是价值和减去最小割

那么我们二分\(level\)然后网络流判断就好了

view code
#pragma GCC optimize("O3")
#pragma GCC optimize("Ofast,no-stack-protector")
#include<bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define LL long long int
#define vi vector<int>
#define vl vector<LL>
#define pb push_back
#define all(V) V.begin(),V.end()
#define sci(x) scanf("%d",&x)
#define scl(x) scanf("%I64d",&x)
#define pii pair<int,int>
#define cmax(a,b) ((a) = (a) > (b) ? (a) : (b))
#define cmin(a,b) ((a) = (a) < (b) ? (a) : (b))
#define debug(x) cerr << #x << " = " << x << endl
function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
const int MAXN = 222;
#define S 0
#define T MAXN - 1
struct EDGE{
int to,cap,rev;
EDGE(){};
EDGE(int to, int cap, int rev):to(to),cap(cap),rev(rev){};
};
vector<EDGE> G[MAXN];
int iter[MAXN],rk[MAXN];
void ADDEDGE(int u, int v, int cap){
G[u].push_back(EDGE(v,cap,(int)G[v].size()));
G[v].push_back(EDGE(u,0,(int)G[u].size()-1));
}
bool bfs(){
memset(rk,0,sizeof(rk));
memset(iter,0,sizeof(iter));
rk[S] = 1;
queue<int> que;
que.push(S);
while(!que.empty()){
int u = que.front();
que.pop();
for(auto e : G[u]){
if(!e.cap or rk[e.to]) continue;
rk[e.to] = rk[u] + 1;
que.push(e.to);
}
}
return rk[T]!=0;
}
int dfs(int u, int flow){
if(u==T) return flow;
for(int &i = iter[u]; i < (int)G[u].size(); i++){
auto &e = G[u][i];
if(!e.cap or rk[e.to]!=rk[u]+1) continue;
int d = dfs(e.to,min(e.cap,flow));
if(d){
e.cap -= d;
G[e.to][e.rev].cap += d;
return d;
}
}
return 0;
}
int Dinic(){
int flow = 0;
while(bfs()){
int d = dfs(S,INF);
while(d){
flow += d;
d = dfs(S,INF);
}
}
return flow;
}
const int MAXM = 2e5+7;
int n, k, prime[MAXM], pri_cnt;
bool npm[MAXM];
vector<pii> card[MAXN]; void sieve(){
for(int i = 2; i < MAXM; i++){
if(!npm[i]) prime[++pri_cnt] = i;
for(int j = 1; i * prime[j] < MAXM; j++){
npm[i*prime[j]] = true;
if(i%prime[j]==0) break;
}
}
}
void solve(){
sieve();
sci(n), sci(k);
for(int i = 1; i <= n; i++){
int x, y, z;
sci(x), sci(y), sci(z);
card[z].pb({x,y});
}
int l = 1, r = n;
while(l<=r){
int mid = (l + r) >> 1;
vector<pii> odd, even;
int val1 = 0;
for(int i = 0; i < MAXN; i++) G[i].clear();
for(int i = 1; i <= mid; i++) for(auto p : card[i]){
if(p.second==1) cmax(val1,p.first);
else if(p.second&1) odd.pb(p);
else even.pb(p);
}
if(val1) odd.pb({val1,1});
int sum = 0;
for(auto p : odd) sum += p.first;
for(auto p : even) sum += p.first;
for(int i = 0; i < (int)even.size(); i++) ADDEDGE(i+1+odd.size(),T,even[i].first);
for(int i = 0; i < (int)odd.size(); i++){
ADDEDGE(S,i+1,odd[i].first);
for(int j = 0; j < (int) even.size(); j++) if(!npm[odd[i].second+even[j].second]) ADDEDGE(i+1,j+1+odd.size(),INF);
}
if(sum - Dinic()>=k) r = mid - 1;
else l = mid + 1;
}
cout << (l==n+1?-1:l) << endl;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("Local.in","r",stdin);
freopen("ans.out","w",stdout);
#endif
solve();
return 0;
}

G. Anthem of Berland

匹配问题,考虑类似\(KMP\)的做法,先根据\(t\)串得到\(fail\)数组,然后类似\(AC\)自动机,得到每个位置匹配下一个字符到的位置

然后考虑\(dp\),\(dp[i][j]\)表示现在\(s\)串的\(i\)位置匹配到了\(t\)串的\(j\)位置完美匹配的最多次数,遇到字母直接转移,否则枚举\(26\)个字母转移即可

view code
#pragma GCC optimize("O3")
#pragma GCC optimize("Ofast,no-stack-protector")
#include<bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define LL long long int
#define vi vector<int>
#define vl vector<LL>
#define pb push_back
#define all(V) V.begin(),V.end()
#define sci(x) scanf("%d",&x)
#define scl(x) scanf("%I64d",&x)
#define pii pair<int,int>
#define cmax(a,b) ((a) = (a) > (b) ? (a) : (b))
#define cmin(a,b) ((a) = (a) < (b) ? (a) : (b))
#define debug(x) cerr << #x << " = " << x << endl
function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
const int MAXN = 1e5+7;
char s[MAXN], t[MAXN];
int fail[MAXN], ch[MAXN][26], n, m; void solve(){
scanf("%s %s",s+1,t+1);
n = strlen(s+1), m = strlen(t+1);
for(int i = 2, len = 0; i <= m;){
if(t[i]==t[len+1]) fail[i++] = ++len;
else{
if(len) len = fail[len];
else fail[i++] = len;
}
}
for(int i = 0; i < m; i++){
for(int j = 0; j < 26; j++) ch[i][j] = ch[fail[i]][j];
ch[i][t[i+1]-'a'] = i + 1;
}
vector<vi> f(n+1,vi(m+1,-1));
f[0][0] = 0;
for(int i = 0; i < n; i++){
for(int j = 0; j < m; j++){
if(f[i][j]==-1) continue;
for(int k = (s[i+1]=='?'?0:s[i+1]-'a'); k < (s[i+1]=='?'?26:s[i+1]-'a'+1); k++){
if(ch[j][k]==m) cmax(f[i+1][fail[m]],f[i][j] + 1);
else cmax(f[i+1][ch[j][k]],f[i][j]);
}
}
}
cout << *max_element(all(f[n])) << endl;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("Local.in","r",stdin);
freopen("ans.out","w",stdout);
#endif
solve();
return 0;
}

Educational Codeforces Round 21的更多相关文章

  1. Educational Codeforces Round 21 D.Array Division(二分)

    D. Array Division time limit per test:2 seconds memory limit per test:256 megabytes input:standard i ...

  2. Educational Codeforces Round 21(A.暴力,B.前缀和,C.贪心)

    A. Lucky Year time limit per test:1 second memory limit per test:256 megabytes input:standard input ...

  3. Educational Codeforces Round 21 Problem E(Codeforces 808E) - 动态规划 - 贪心

    After several latest reforms many tourists are planning to visit Berland, and Berland people underst ...

  4. Educational Codeforces Round 21 Problem D(Codeforces 808D)

    Vasya has an array a consisting of positive integer numbers. Vasya wants to divide this array into t ...

  5. Educational Codeforces Round 21 Problem A - C

    Problem A Lucky Year 题目传送门[here] 题目大意是说,只有一个数字非零的数是幸运的,给出一个数,求下一个幸运的数是多少. 这个幸运的数不是最高位的数字都是零,于是只跟最高位有 ...

  6. Educational Codeforces Round 21 A-E题题解

    A题      ............太水就不说了,贴下代码 #include<string> #include<iostream> #include<cstring& ...

  7. Educational Codeforces Round 21 Problem F (Codeforces 808F) - 最小割 - 二分答案

    Digital collectible card games have become very popular recently. So Vova decided to try one of thes ...

  8. CF Educational Codeforces Round 21

    A. Lucky Year time limit per test 1 second memory limit per test 256 megabytes input standard input ...

  9. Educational Codeforces Round 21 D - Array Division (前缀和+二分)

    传送门 题意 将n个数划分为两块,最多改变一个数的位置, 问能否使两块和相等 分析 因为我们最多只能移动一个数x,那么要么将该数往前移动,要么往后移动,一开始处理不需要移动的情况 那么遍历sum[i] ...

随机推荐

  1. 基于Python实现的系统SLA可用性统计

    基于Python实现的系统SLA可用性统计 1. 介绍 SLA是Service Level Agreement的英文缩写,也叫服务质量协议.根据SRE Google运维解密一书中的定义: SLA是服务 ...

  2. Nginx 路由转发和反向代理 location 配置

    Nginx 配置的三种方式 第一种直接替换 location 匹配部分 第二种 proxy_pass 的目标地址,默认不带 /,表示只代理域名,url 和参数部分不会变(把请求的 path 拼接到 p ...

  3. leetcode 473. 火柴拼正方形(DFS,回溯)

    题目链接 473. 火柴拼正方形 题意 给定一串数,判断这串数字能不能拼接成为正方形 思路 DFS,但是不能每次从从序列开始往下搜索,因为这样无法做到四个边覆盖不同位置的值,比如输入是(5,5,5,5 ...

  4. 查看pod日志无法查看的解决方式

    查看pod日志 [root@k8s-master1 ~]# kubectl logs nginx-7cdbd8cdc9-2qrcw Error from server (Forbidden): For ...

  5. 前端基础功能,原生js实现轮播图实例教程

    轮播图是前端最基本.最常见的功能,不论web端还是移动端,大平台还是小网站,大多在首页都会放一个轮播图效果.本教程讲解怎么实现一个简单的轮播图效果.学习本教程之前,读者需要具备html和css技能,同 ...

  6. LeetCode-P53题解【动态规划】

    本文为原创,转载请注明:http://www.cnblogs.com/kylewilson/ 题目出处: https://leetcode.com/problems/maximum-subarray/ ...

  7. es6语法详解

    什么是ECMAScript? ECMAScript是浏览器脚本语言的规范,而我们熟知的js语言,如JavaScript则是规范的具体实现.es6就好比Java的jdk. 一.es6语法详解:let声明 ...

  8. 同一份数据,Redis为什么要存两次

    前言 在 Redis 中,有一种数据类型,当在存储的时候会同时采用两种数据结构来进行分别存储,那么 Redis 为什么要这么做呢?这么做会造成同一份数据占用两倍空间吗? 五种基本类型之集合对象 Red ...

  9. celery应用

    celery---分布式任务队列 Celery是一个简单,灵活且可靠的分布式系统,可以处理大量消息,同时为操作提供维护该系统所需的工具. Celery是一个基于python开发的模块,可以帮助我们对任 ...

  10. spark开窗函数

    源文件内容示例: http://bigdata.beiwang.cn/laoli http://bigdata.beiwang.cn/laoli http://bigdata.beiwang.cn/h ...