LINK:tree



整场比赛看起来最不可做 确是最简单的题目。

感觉很难写 不过单独考虑某个点 容易想到树形dp的状态.

设f[x]表示以x为根的子树内有黑边的方案数。

白边方案只有一种所以不用记录。

转移 可能需要斟酌一下 我是列举了可能的所有情况 然后得到转移式子的。

\(f[x]=\Pi_{tn\in son_x}(f[tn]+2)-1\)

容易想到换根 容易发现可能不存在逆元 所以 需要乱搞一下.

(考场上没多想 看到树随机直接又接了一个暴力

就是没逆元再跑回去得到答案.(随机下挺快的不过我写挂了。

然后就是 处理前后缀积 也可以快速得到 可以利用vector 也可以直接记录除了某个点的前后缀积。

换根的时候 也要符合dp式子进行换根.我当时傻了开了vector 其实可以直接记录的。

const int MAXN=100010;
int n,len,top;
int f[MAXN],ans[MAXN],g[MAXN],id[MAXN],q[MAXN];
int lin[MAXN],ver[MAXN<<1],nex[MAXN<<1];
vector<int>w1[MAXN],w[MAXN];
inline void add(int x,int y)
{
ver[++len]=y;nex[len]=lin[x];lin[x]=len;
ver[++len]=x;nex[len]=lin[y];lin[y]=len;
}
inline void dfs(int x,int fa)
{
int w2=1,ww=0;
w[x].pb(1);w1[x].pb(1);
go(x)if(tn!=fa)
{
dfs(tn,x);
w2=(ll)w2*(1+f[tn]+1)%mod;
w[x].pb(w2);
w1[x].pb(w2);
id[tn]=++ww;
}
w1[x].pb(1);w2=1;top=0;
go(x)if(tn!=fa)q[++top]=tn;
fep(top,1,i)
{
w2=(ll)w2*(2+f[q[i]])%mod;
w1[x][i]=w2;
}
f[x]=(w2-1+mod)%mod;
}
inline void dp(int x,int fa,int v)
{
if(x!=1){ans[x]=((ll)(f[x]+1)*v-1+mod)%mod;}
go(x)if(tn!=fa)
dp(tn,x,((ll)v*w[x][id[tn]-1]%mod*w1[x][id[tn]+1]+2-1)%mod);
}
int main()
{
//freopen("1.in","r",stdin);
get(n);
rep(2,n,i)add(read(),i);
dfs(1,0);ans[1]=f[1];
dp(1,0,1);
rep(1,n,i)put_((ans[i]+1)%mod);
return 0;
}

5.10 省选模拟赛 tree 树形dp 逆元的更多相关文章

  1. 4.13 省选模拟赛 树 树形dp 卷积 NTT优化dp.

    考试的时候 看到概率 看到期望我就怂 推了一波矩阵树推自闭了 发现 边权点权的什么也不是. 想到了树形dp 维护所有边的断开情况 然后发现数联通块的和再k次方过于困难. 这个时候 应该仔细观察一下 和 ...

  2. 5.10 省选模拟赛 拍卖 博弈 dp

    LINK:拍卖 比赛的时候 前面时间浪费的有点多 写这道题的时候 没剩多少时间了. 随便设了一个状态 就开始做了. 果然需要认真的思考.其实 从我的状态的状态转移中可以看出所有的结论. 这里 就不再赘 ...

  3. 6.10 省选模拟赛 小C的利是 高斯消元 矩阵行列式

    LINK:小C的利是 想起来把这道题的题解写了 .一个常识:利是在广东那边叫做红包. 关于行列式的题目 不过我不太会23333..口胡还是可以的. 容易想到10分的状压.不过没什么意思. 仔细观察要求 ...

  4. 4.3 省选模拟赛 序列游戏 dp

    可以发现 某一段被删除后状态难以表示 也难以链接起来. 考虑暴力 有40分的状压dp 暴力存状态 然后枚举转移即可.最后注意和f[0]这个状态取max 不然一分都没有. const int MAXN= ...

  5. 6.3 省选模拟赛 Decompose 动态dp 树链剖分 set

    LINK:Decompose 看起来很难 实际上也很难 考验选手的dp 树链剖分 矩阵乘法的能力. 容易列出dp方程 暴力dp 期望得分28. 对于链的情况 容易发现dp方程可以转矩阵乘法 然后利用线 ...

  6. 5.12 省选模拟赛 T2 贪心 dp 搜索 差分

    LINK:T2 这题感觉很套路 但是不会写. 区间操作 显然直接使用dp不太行 直接爆搜也不太行复杂度太高. 容易想到差分 由于使得整个序列都为0 那么第一个数也要i差分前一个数 强行加一个0 然后 ...

  7. 【洛谷比赛】[LnOI2019]长脖子鹿省选模拟赛 T1 题解

    今天是[LnOI2019]长脖子鹿省选模拟赛的时间,小编表示考的不怎么样,改了半天也只会改第一题,那也先呈上题解吧. T1:P5248 [LnOI2019SP]快速多项式变换(FPT) 一看这题就很手 ...

  8. 10.17 NOIP模拟赛

    目录 2018.10.17 NOIP模拟赛 A 咒语curse B 神光light(二分 DP) C 迷宫maze(次短路) 考试代码 B 2018.10.17 NOIP模拟赛 时间:1h15min( ...

  9. 10.16 NOIP模拟赛

    目录 2018.10.16 NOIP模拟赛 A 购物shop B 期望exp(DP 期望 按位计算) C 魔法迷宫maze(状压 暴力) 考试代码 C 2018.10.16 NOIP模拟赛 时间:2h ...

随机推荐

  1. 关于display的box和flex布局

    关于二者的区别于联系,在知乎上看到有人这么回答的 flex 2012年的语法,也将是以后标准的语法,大部分浏览器已经实现了无前缀版本. box是2009年的语法,已经过时,是需要加上对应前缀的. 另外 ...

  2. C#远程连接代码

    /// <summary> /// 服务连接配置类(验证服务账号是否正确) /// </summary> /// <param name="remoteHost ...

  3. 二分查找&二叉排序树

    首先我们先来复习一下二分查找的算法 对于正向序列的二分查找 递归实现: bool binary_search(vector<int> &sort_arry,int begin,in ...

  4. 关于小白一天摆弄Axure产品原型的心得

    因为项目所需,被迫快速设计产品原型,制作app使用视频,这里简单分享一些一个小白第一次触碰产品原型设计的一些心得: 原型设计工具的选用 我这里针对的是贫穷学生党,分享的是自己尝试的几款.有钱大佬自行绕 ...

  5. 浏览器如何解析css选择器?

    浏览器会『从右往左』解析CSS选择器. 我们知道DOM Tree与Style Rules合成为 Render Tree,实际上是需要将Style Rules附着到DOM Tree上, 因此需要根据选择 ...

  6. 深入Vue-router最佳实践

    前言 最近再刷Vue周边生态的官方文档,因为之前的学习都是看视频配合着文档,但主要还是通过视频学习,所以很多知识点都没有了解,至从上次刷了Vuex的官方文档就体会到了通读文档的好处,学习一门技术最好的 ...

  7. 机器学习实战基础(十三):sklearn中的数据预处理和特征工程(六)特征选择 feature_selection 简介

    当数据预处理完成后,我们就要开始进行特征工程了. 在做特征选择之前,有三件非常重要的事:跟数据提供者开会!跟数据提供者开会!跟数据提供者开会!一定要抓住给你提供数据的人,尤其是理解业务和数据含义的人, ...

  8. 目录(Python基础)

    Python之介绍.基本语法.流程控制 Python之列表.字典.集合 Python之函数.递归.内置函数 Python之迭代器.装饰器.软件开发规范 Python之常用模块学习(一) Python之 ...

  9. redis(九):Redis 哈希(Hash)(python)

    # -*- coding: utf-8 -*- import redis #这个redis不能用,请根据自己的需要修改 r =redis.Redis(host="123.56.74.190& ...

  10. bzoj3436小K的农场

    bzoj3436小K的农场 题意: n个数,知道m条关系:a-b≥c.a-b≤c或a==b.问是否存在满足所有关系的情况.n≤10000,m≤10000. 题解: 差分约束.因为只要求是否满足,因此最 ...