题目:戳这里

题意:A和B博弈,三种操作分别是x:加a,y:减b,z:取相反数。当x或y或z为0,说明该操作不可取,数据保证至少有一个操作可取,给定一个区间(l,k)和原始数字m,如果A和B在n次操作以后使m小于等于l,则B赢,大于等于k则A赢。如果A或B实在赢不了,就会尽量让对方也没法赢。

解题思路:因为数据范围始终在[-100,100],我们就有了逆推的想法。思路是假如n=3且A必赢。因为我们假设的是A必赢,那么第三步之后的m一定在nu3:[k,100]之间,又因为第三步是A的操作,A肯定是哪步操作可以赢,就使用哪步操作,所以第三步以前的范围nu2是根据第三步以后的范围nu3:[k,100]对所有操作逆推出来的集合求并。据此从nu3逆推出nu2。

第三步之间就是第二步,第二步是B的操作,B如果有任何机会肯定是不会让A赢的,所以第二步之前的范围nu1是第二步以后nu2对所有操作逆推出来的集合求交。

nu1同nu3的推法。

第二种情况就是B必赢。也是和上面的思路一样推,如果A必赢和B必赢都无法满足,那一定是在(l,k)之间了。

看代码更好理解。

附ac代码:

  1 #include<bits/stdc++.h>
2 using namespace std;
3 const int maxn = 1e3 + 10;
4 typedef long long ll;
5 int nu[maxn][11];
6 int ans[2][555];
7 int main()
8 {
9 int n, now ,l ,k;
10 scanf("%d %d %d %d", &n, &now, &k, &l);
11 for(int i = 1; i <= n; ++i)
12 {
13 scanf("%d %d %d", &nu[i][1], &nu[i][2], &nu[i][3]);
14 }
15 //B win
16 for(int j = -100; j <= 100; ++j)
17 {
18 if(j <= l)
19 ans[n & 1][j + 200] = 1;
20 else
21 ans[n & 1][j + 200] = 0;
22 }
23 for(int i = n; i >= 1; --i)
24 {
25 memset(ans[(i&1)^1], 0, sizeof(ans[(i&1)^1]));
26 for(int j = -100; j <= 100; ++j)
27 {
28 if(i&1)
29 {
30 int flag = 0;
31 if(nu[i][1])
32 {
33 int u = min(j + nu[i][1], 100);
34 if(!ans[i&1][u + 200]) flag++;
35 }
36 if(nu[i][2])
37 {
38 int u = max(j - nu[i][2], -100);
39 if(!ans[i&1][u + 200]) flag++;
40 }
41 if(nu[i][3])
42 {
43 int u = j * -1;
44 if(!ans[i&1][u + 200]) flag++;
45 }
46 // printf("%d %d %d %d\n", i, j, flag, ans[i&1][j + 200]);
47 if(!flag) ans[(i&1) ^ 1][j + 200] = 1;
48 }
49 else
50 {
51 int flag = 0, v = 0;
52 if(nu[i][1])
53 {
54 ++v;
55 int u = min(j + nu[i][1], 100);
56 if(!ans[i&1][u + 200]) flag++;
57 }
58 if(nu[i][2])
59 {
60 ++v;
61 int u = max(j - nu[i][2], -100);
62 if(!ans[i&1][u + 200]) flag++;
63 }
64 if(nu[i][3])
65 {
66 ++v;
67 int u = j * -1;
68 if(!ans[i&1][u + 200]) flag++;
69
70 }
71 // printf("%d %d %d u %d\n", i, j, flag == v, l);
72 if(flag != v) ans[(i&1) ^ 1][j + 200] = 1;
73
74 }
75 }
76 }
77 int bwin = 0;
78 for(int i = -100; i <= 100; ++i)
79 {
80 // printf("%d %d\n", i, ans[0][i + 200]);
81 if(ans[0][i + 200] && i == now)
82 {
83 ++bwin;
84 break;
85 }
86 }
87 for(int i = -100; i <= 100; ++i)
88 {
89 if(i >= k)
90 ans[n & 1][i + 200] = 1;
91 else
92 ans[n & 1][i + 200] = 0;
93 }
94
95 for(int i = n; i >= 1; --i)//a win
96 {
97 memset(ans[(i&1)^1], 0, sizeof(ans[(i&1)^1]));
98 for(int j = -100; j <= 100; ++j)
99 {
100 if(i & 1)
101 {
102 int flag = 0 ,v = 0;
103 if(nu[i][1])
104 {
105 ++v;
106 int u = min(j + nu[i][1], 100);
107 if(!ans[i&1][u + 200]) flag++;
108 }
109 if(nu[i][2])
110 {
111 ++v;
112 int u = max(j - nu[i][2], -100);
113 if(!ans[i&1][u + 200]) flag++;
114 }
115 if(nu[i][3])
116 {
117 ++v;
118 int u = j * -1;
119 if(!ans[i&1][u + 200]) flag++;
120 }
121 // printf("%d %d %d v %d\n", i, j, flag == v, ans[i&1][j + 200]);
122 if(flag != v) ans[(i&1) ^ 1][j + 200] = 1;
123 }
124 else
125 {
126 int flag = 0;
127 if(nu[i][1])
128 {
129 int u = min(j + nu[i][1], 100);
130 if(!ans[i&1][u + 200]) flag++;
131 }
132 if(nu[i][2])
133 {
134 int u = max(j - nu[i][2], -100);
135 if(!ans[i&1][u + 200]) flag++;
136 }
137 if(nu[i][3])
138 {
139 int u = j * -1;
140 if(!ans[i&1][u + 200]) flag++;
141 }
142 // printf("%d %d %d %d\n", i, j, flag, ans[i&1][j + 200]);
143 if(!flag) ans[(i&1) ^ 1][j + 200] = 1;
144 }
145 }
146 }
147 int awin = 0;
148 for(int i = -100; i <= 100; ++i)
149 {
150 if(ans[0][i + 200] && i == now)
151 {
152 ++awin;
153 break;
154 }
155 }
156 //printf("%d %d\n", awin, bwin);
157 if(!awin && !bwin) puts("Normal Ending");
158 if(awin) puts("Good Ending");
159 if(bwin) puts("Bad Ending");
160 return 0;
161 }

ACM-ICPC 2018 徐州赛区网络预赛 B BE, GE or NE 【模拟+博弈】的更多相关文章

  1. ACM-ICPC 2018 徐州赛区网络预赛 B. BE, GE or NE

    In a world where ordinary people cannot reach, a boy named "Koutarou" and a girl named &qu ...

  2. ACM-ICPC 2018 徐州赛区网络预赛 B BE, GE or NE(记忆化搜索)

    https://nanti.jisuanke.com/t/31454 题意 两个人玩游戏,最初数字为m,有n轮,每轮三个操作给出a b c,a>0表示可以让当前数字加上a,b>0表示可以让 ...

  3. ACM-ICPC 2018 徐州赛区网络预赛 B BE, GE or NE(博弈,记忆化搜索)

    链接https://nanti.jisuanke.com/t/31454 思路 开始没读懂题,也没注意看数据范围(1000*200的状态,记忆化搜索随便搞) 用记忆化搜索处理出来每个状态的胜负情况 因 ...

  4. ACM-ICPC 2018 徐州赛区网络预赛 F Features Track(STL模拟)

    https://nanti.jisuanke.com/t/31458 题意 有N个帧,每帧有K个动作特征,每个特征用一个向量表示(x,y).两个特征相同当且仅当他们在不同的帧中出现且向量的两个分量分别 ...

  5. ACM-ICPC 2018 徐州赛区网络预赛 I Characters with Hash(模拟)

    https://nanti.jisuanke.com/t/31461 题意 一个hash规则,每个字母映射成一个两位数,求给的字符串最后的编码位数,要求去除最终结果的前导零 分析 按题意模拟就是了 # ...

  6. ACM-ICPC 2018 徐州赛区网络预赛 G. Trace (思维,贪心)

    ACM-ICPC 2018 徐州赛区网络预赛 G. Trace (思维,贪心) Trace 问答问题反馈 只看题面 35.78% 1000ms 262144K There's a beach in t ...

  7. ACM-ICPC 2018 徐州赛区网络预赛 J. Maze Designer (最大生成树+LCA求节点距离)

    ACM-ICPC 2018 徐州赛区网络预赛 J. Maze Designer J. Maze Designer After the long vacation, the maze designer ...

  8. 计蒜客 1460.Ryuji doesn't want to study-树状数组 or 线段树 (ACM-ICPC 2018 徐州赛区网络预赛 H)

    H.Ryuji doesn't want to study 27.34% 1000ms 262144K   Ryuji is not a good student, and he doesn't wa ...

  9. ACM-ICPC 2018 徐州赛区网络预赛 B(dp || 博弈(未完成)

    传送门 题面: In a world where ordinary people cannot reach, a boy named "Koutarou" and a girl n ...

随机推荐

  1. C# url的编码解码,xml和json的序列化和反序列化

    参考中国慕课网dot net web编程应用程序实践 using System; using System.Collections.Generic; using System.IO; using Sy ...

  2. typora+PicGo+gitee搭建免费的的床

    一.gitee 1.第一步拥有自己的gitee账号 没有的可以自己去注册gitee地址 2.使用自己的gitee账号创建仓库 创建好之后注意 记住.com/以后的地址 此处就为y***L/photo- ...

  3. Vue案例之todoLIst实现

    使用Vue实现todolist案例,如有不对敬请大佬多多指教 功能: 1.增加功能:在新增版块里面的输入框内输入数据,点击后面的"添加"按钮,将输入的数据添加到列表中,默认是未完成 ...

  4. 关于Vue v-model你需要知道的一切

    ​v-model是Vue的一个指令,它提供了input和form数据之间或两个组件之间的双向数据绑定. 这在Vue开发中是一个简单的概念,但是v-model的真正威力需要一些时间才能理解. 到本教程结 ...

  5. jQuery 移入显示div,移出当前div,移入到另一个div还是显示。

    jQuery 移入移出 操作div 1 <style type="text/css"> 2 .box{ 3 position: relative; 4 } 5 .box ...

  6. (005)每日SQL学习:关于物化视图的一系列创建等语句

    --给用户授权 GRANT CREATE MATERIALIZED VIEW TO CDR; --创建物化视图的表日志(具体到某个表,物化视图中用到几个表就需要建立几个日志):当用FAST选项创建物化 ...

  7. 端口被占用通过域名的处理 把www.domain.com均衡到本机不同的端口 反向代理 隐藏端口 Nginx做非80端口转发 搭建nginx反向代理用做内网域名转发 location 规则

    负载均衡-Nginx中文文档 http://www.nginx.cn/doc/example/loadbanlance.html 负载均衡 一个简单的负载均衡的示例,把www.domain.com均衡 ...

  8. cookie,session,token傻傻分不清

    什么是认证(Authentication) • 通俗地讲就是验证当前用户的身份,证明"你是你自己"(比如:你每天上下班打卡,都需要通过指纹打卡,当你的指纹和系统里录入的指纹相匹配时 ...

  9. 「笔记」数位DP

    目录 写在前面 引入 求解 特判优化 代码 例题 「ZJOI2010」数字计数 「AHOI2009」同类分布 套路题们 「SDOI2014」数数 写在最后 写在前面 19 年前听 zlq 讲课的时候学 ...

  10. LOJ10092半连通子图

    Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u ...