题目:点击打开链接

题意:两个人做游戏,共有n个数,每个人可以任选一端取任意多连续的数,问两个人都想拿最多的情况下,先手最多比后手多拿多少分数。

思路:这题一开始想到的是用dp[i][j]表示区间[i,j]内先手最多比后手多拿多少分数,那么状态转移方程为dp[i][j]=max(sum[j]-sum[i-1],dp[i][j],sum[k]-sum[i-1]-dp[k+1][j],sum[j]-sum[k-1]-dp[i][k-1]),时间复杂度为O(n^3).看白书里的方法,发现有时间复杂度为O(n^2)的算法,即用dp[i][j]表示区间[i,j]内先手最多能拿多少分数,那么状态转移方程就是dp[i][j]=min(sum[i]-sum[j-1],sum[i,j]-min(dp[i+1][j],dp[i+2][j]...dp[j][j],dp[i,i],dp[i,i+1]...dp[i,j-1]
 )),我们发现dp[i+1][j]...dp[j][j],以及dp[i][i+1],...dp[i,j-1]可以递推出来,所以我们可以记录s1[i][j]=min{dp[i][j],dp[i+1][j],...dp[j][j] },s2[i][j]=min{dp[i,i],dp[i,i+1],dp[i,i+1],...dp[i,j-1] },这样就可以在O(1)的时间内递推出来了。

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<bitset>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef long double ldb;
#define inf 99999999
#define pi acos(-1.0)
#define maxn 106
int dp[maxn][maxn],a[maxn],sum[maxn],s1[maxn][maxn],s2[maxn][maxn]; int main()
{
int n,m,i,j,len,k;
while(scanf("%d",&n)!=EOF && n!=0)
{
sum[0]=0;
for(i=1;i<=n;i++){
scanf("%d",&a[i]);
sum[i]=sum[i-1]+a[i]; }
for(i=1;i<=n;i++){
dp[i][i]=a[i];
s1[i][i]=a[i];
s2[i][i]=a[i];
}
for(len=2;len<=n;len++){
for(i=1;i+len-1<=n;i++){
j=i+len-1;
dp[i][j]=sum[j]-sum[i-1]; dp[i][j]=max(dp[i][j],sum[j]-sum[i-1]-s1[i+1][j] );
dp[i][j]=max(dp[i][j],sum[j]-sum[i-1]-s2[i][j-1] ); s1[i][j]=min(s1[i+1][j],dp[i][j]);
s2[i][j]=min(s2[i][j-1],dp[i][j]); }
}
printf("%d\n",2*dp[1][n]-sum[n]);
}
return 0;
}

uva10891 Game of Sum(博弈+区间dp+优化)的更多相关文章

  1. Uva 10891 经典博弈区间DP

    经典博弈区间DP 题目链接:https://uva.onlinejudge.org/external/108/p10891.pdf 题意: 给定n个数字,A和B可以从这串数字的两端任意选数字,一次只能 ...

  2. UVA - 10891 Game of Sum (区间dp)

    题意:AB两人分别拿一列n个数字,只能从左端或右端拿,不能同时从两端拿,可拿一个或多个,问在两人尽可能多拿的情况下,A最多比B多拿多少. 分析: 1.枚举先手拿的分界线,要么从左端拿,要么从右端拿,比 ...

  3. UVA 10891 Game of Sum(区间DP(记忆化搜索))

    题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...

  4. hdu 4579 博弈+区间dp

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4597 #include <cstdio> #include <cstring> ...

  5. hdu3280Equal Sum Partitions (区间DP)

    Problem Description An equal sum partition of a sequence of numbers is a grouping of the numbers (in ...

  6. HDU 1231 最大连续子序列 &&HDU 1003Max Sum (区间dp问题)

    C - 最大连续子序列 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit ...

  7. 【UVA】10891 Game of Sum(区间dp)

    题目 传送门:QWQ 分析 大力dp.用$ dp[i][j] $表示$ [i,j] $A能得到的最高分 我看到博弈论就怂... 代码 #include <bits/stdc++.h> us ...

  8. hdu 3506 Monkey Party 区间dp + 四边形不等式优化

    http://acm.hdu.edu.cn/showproblem.php?pid=3506 四边行不等式:http://baike.baidu.com/link?url=lHOFq_58V-Qpz_ ...

  9. HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化

    HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化 n个节点n-1条线性边,炸掉M条边也就是分为m+1个区间 问你各个区间的总策略值最少的炸法 就题目本身而言,中规中矩的 ...

随机推荐

  1. 【Git】4、创建代码仓库,HTTP、SSH拉取远端代码

    拉取远端代码:使用Git命令下载远程仓库到本地 文章目录 拉取远端代码:使用Git命令下载远程仓库到本地 1.创建远程代码仓库 2.创建仓库 3.进入仓库 4.HTTP(S)获取远程仓库 首次拉取 更 ...

  2. 【Spring】 Spring的核心容器

    Spring的核心容器 文章目录 Spring的核心容器 BeanFactory ApplicationContext 1.通过ClassPathXmlApplicationContext创建 2.通 ...

  3. a[i][j] 和 a[j][i] 有什么区别?

    本文以一个简单的程序开头--数组赋值: int LEN = 10000;int[][] arr = new int[LEN][LEN]; for (int i = 0; i < LEN; i++ ...

  4. ASP.NET Core错误处理中间件[2]: 开发者异常页面

    <呈现错误信息>通过几个简单的实例演示了如何呈现一个错误页面,该过程由3个对应的中间件来完成.下面先介绍用来呈现开发者异常页面的DeveloperExceptionPageMiddlewa ...

  5. 在Jetbrain IDE中自定义TODO功能

    好的IDE能为开发以及学习源码带来效率的提升,今天要介绍的就是Jetbrain家族中IDE自带的TODO功能,我认为利用好它,能够大大的提升阅读源码的效率. 假设我现在需要去阅读源代码,看了半天我终于 ...

  6. C语言------三目运算符(条件运算符)

    今天在看C语言的时候看到了下面的代码(废话少说,直接上代码): #include <stdio.h> int main() {int max(); extern int A,B,C; // ...

  7. 使用call、apply、bind继承及三者区别

    js里的继承方法有很多,比如:使用原型链的组合继承.es6的Class.寄生继承以及使用call.apply.bind继承.再说继承之前,我们先简单了解下它们的区别. 一.区别: 同:三者都是改变函数 ...

  8. UI测试框架

    1. 从上到下共分成4层: 用例层  组件管理层  元素管理层  公共数据层 2. 用例层: 将每条用例使用参数化, 公共参数存储到"公共数据层", 中间参数通过组件层传递 3. ...

  9. Angular入门到精通系列教程(11)- 模块(NgModule),延迟加载模块

    1. 摘要 2. NgModule举例.说明 3. Angular CLI生成模块 4. 延迟加载模块 5. 总结 环境: Angular CLI: 11.0.6 Angular: 11.0.7 No ...

  10. Flask扩展点总结(信号)

    信号(源码) 信号,是在flask框架中为我们预留的钩子,让我们可以进行一些自定义操作. pip3 install blinker 根据flask项目的请求流程来进行设置扩展点 1.中间件 from ...