题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3714

如果用s[ i ]表示前 i 个的奇偶性,那么c(i_j)表示s[ i-1 ]^s[ j ]。知道其中一个就能知道另一个。

已知s[ 0 ]=0。所以把 c 看成连边,从0能走到每个点就行。即求一个最小生成树。

然后跑得很慢地A了。也不知为何这么慢。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int N=;
int n,xnt,fa[N],cnt;
ll ans;
struct Ed{
int x,y,w;
Ed(int x=,int y=,int w=):x(x),y(y),w(w) {}
bool operator< (const Ed &b) const
{return w<b.w;}
}ed[N*N>>];
int rdn()
{
int ret=;bool fx=;char ch=getchar();
while(ch>''||ch<''){if(ch=='-')fx=;ch=getchar();}
while(ch>=''&&ch<='') ret=(ret<<)+(ret<<)+ch-'',ch=getchar();
return fx?ret:-ret;
}
int find(int a){return fa[a]==a?a:fa[a]=find(fa[a]);}
int main()
{
n=rdn();
for(int i=;i<=n;i++)
for(int j=i,z;j<=n;j++)
{
z=rdn();
ed[++xnt]=Ed(i-,j,z);
}
sort(ed+,ed+xnt+);
for(int i=;i<=n;i++) fa[i]=i;
for(int i=,u,v;i<=xnt;i++)
{
u=find(ed[i].x); v=find(ed[i].y);
if(u!=v)
{
fa[u]=v;ans+=ed[i].w;
cnt++;
if(cnt==n)break;
}
}
printf("%lld\n",ans);
return ;
}

bzoj 3714 [PA2014]Kuglarz——思路+最小生成树的更多相关文章

  1. bzoj 3714: [PA2014]Kuglarz【最小生成树】

    参考:https://blog.csdn.net/aarongzk/article/details/48883741 没想到吧.jpg 来自题解: "如果用sum[i]表示前i个杯子底球的总 ...

  2. bzoj 3714 [PA2014]Kuglarz 最小生成树

    [PA2014]Kuglarz Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1335  Solved: 672[Submit][Status][Di ...

  3. BZOJ 3714: [PA2014]Kuglarz

    Description 魔术师的桌子上有n个杯子排成一行,编号为1,2,-,n,其中某些杯子底下藏有一个小球,如果你准确地猜出是哪些杯子,你就可以获得奖品.花费c_ij元,魔术师就会告诉你杯子i,i+ ...

  4. 3714: [PA2014]Kuglarz

    3714: [PA2014]Kuglarz 链接 思路: 好题.对于每个点都需要确定它的值,那么一个点可以直接询问[i,i]来确定,或者已经知道了[i,j]和[i+1,j]推出来. 但是可能产生冲突, ...

  5. bzoj 3714 [ PA 2014 ] Kuglarz —— 思路+最小生成树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3714 因为每个杯子下最多一个小球,所以从奇偶性就可以看出有没有球: 询问一段区间,等于知道一 ...

  6. 【BZOJ】3714: [PA2014]Kuglarz

    题意 \(n(1 \le n \le 2000)\)个数每个数是\(0\)或\(1\),现在可以花费\(c_{i, j}\)知道\([i, j]\)的奇偶性,问将所有数都找出来的最小花费. 分析 如果 ...

  7. [bzoj3714] [PA2014] Kuglarz(最小生成树)

    我们考虑这个题...思路比较神仙. 就是我们设\(sum[i]\)为前i个的区间里的情况,然后我们知道\(sum[j]\)的话,我们就可以知道\(j-i\)的情况了 所以说这很像最小生成树里面的约束条 ...

  8. BZOJ3714 [PA2014]Kuglarz 【最小生成树】

    题目链接 BZOJ3714 题解 我们如果知道了所有的数,同样就知道了所有的前缀和 相反,我们如果求出了所有前缀和,就知道了所有的数,二者是等价的 对于一个区间\([l,r]\)如果我们知道了前缀和\ ...

  9. 【BZOJ3714】[PA2014]Kuglarz 最小生成树

    [BZOJ3714][PA2014]Kuglarz Description 魔术师的桌子上有n个杯子排成一行,编号为1,2,…,n,其中某些杯子底下藏有一个小球,如果你准确地猜出是哪些杯子,你就可以获 ...

随机推荐

  1. session 购物车

    package session; import java.io.IOException;import java.util.ArrayList;import java.util.List; import ...

  2. c# .net Global.asax文件的作用

    1 Global.asax文件的作用 先看看MSDN的解释,Global.asax 文件(也称为 ASP.NET 应用程序文件)是一个可选的文件,该文件包含响应 ASP.NET 或HTTP模块所引发的 ...

  3. linux启动参数了解

    文章来源:http://blog.csdn.net/uyiwfn/article/details/7172339在Linux中,给kernel传递参数以控制其行为总共有三种方法:1.build ker ...

  4. iis出现HTTP 错误 403.14 - Forbidden Web问题

    找到"目录浏览",并"应用"

  5. 巧用redis位图存储亿级数据与访问

    业务背景 现有一个业务需求,需要从一批很大的用户活跃数据(2亿+)中判断用户是否是活跃用户.由于此数据是基于用户的各种行为日志清洗才能得到,数据部门不能提供实时接口,只能提供包含用户及是否活跃的指定格 ...

  6. 多媒体开发之---h264 高度和宽度获取

    ( School of Computer Science & Technology, Soochow University,SuZhou 215006:) Abstract: H.264 is ...

  7. [ACM] HDU 1533 Going Home (二分图最小权匹配,KM算法)

    Going Home Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Tota ...

  8. 基于EasyNVR二次开发实现自己的摄像机IPC/NVR无插件化直播解决方案

    在之前的博客中<基于EasyNVR实现RTSP/Onvif监控摄像头Web无插件化直播监控>,我们已经比较多的描述EasyNVR所实现的功能,这些也在方案地址:http://www.eas ...

  9. ptyhon ORM mongoengine

    参考资料:http://www.tuicool.com/articles/bMvI7vN from mongoengine import * from datetime import datetime ...

  10. SCRM从入门到精通01

    [SCRM从入门到精通01]如何基于微信开放接口开发企业的微信CRM? 业内一直都在传说微信是天生的CRM,可是没有人看到过微信CRM的真容.随着微信最新公众平台的改版和开放接口的微信认证开放,微信C ...