numbers

Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 196608/196608 K (Java/Others)
Total Submission(s): 156    Accepted Submission(s): 50
Problem Description
 
Now you have a stack and n numbers 1,2,3,…,n.
These n numbers are pushed in the order and popped if the number is at the top of the stack.
You can read the sample to get more details.
This question is quite easy. Therefore I must give you some limits.
There are m limits, each is expressed as a pair<A,B> means the number A must be popped before B.
Could you tell me the number of ways that are legal in these limits?
I know the answer may be so large, so you can just tell me the answer mod 1000000007({10}^{9}+7).
 

Input
The first line contains an integer T(about 5),indicating the number of cases.
Each test case begins with two integers n(1 \leq n \leq 300) and m(1 \leq m \leq 90000).
Next m lines contains two integers A and B(1 \leq A \leq n,1 \leq B \leq n)
(P.S. there may be the same limits or contradict limits.)
 

Output
For each case, output an integer means the answer mod 1000000007.
 

Sample Input
5
1 0
5 0
3 2
1 2
2 3
3 2
2 1
2 3
3 3
1 2
2 3
3 1
 

Sample Output
1
42
1
2
0
 
Hint

The only legal pop-sequence of case 3 is 1,2,3. The legal pop-sequences of case 4 are 2,3,1 and 2,1,3.

 

Source

设f[i][j]为数字(i-j)的出栈方案数,显然我们可以枚举最后一个出栈的元素k,i<=k<=j。先把[i,k-1]出栈完了之后,把k放进去,然后再放[k+1,j]
并且出栈后再出k。
所以我们可以得到递推式 f[i][j]=Σf[i][k-1]*f[k+1][j] ,当然因为有限制这里的k显然不能取区间[i,j]的所有数。 当然A,B只能对 L<=min(A,B),R>=max(A,B)的f[L][R]产生影响。
我们发现当A<B时,只要k!=A就是合法的,因为出栈顺序是[i,k-1]->[k+1,j]->k;
而当A>B时,观察出栈顺序也可以发现只要k¢(B,A]就是合法的。 于是现在的问题变成了如何快速判断一个k在对于f[i][j]是否合法。。。。
我们可以发现的是,当把区间的左端点看成横坐标,区间的右端点看成纵坐标的时候,对于一组A、B
不合法的区域就是以(1,max(A,B))为左下角,(min(A,B),n)为右上角的矩形。
虽然这个坐标系只有在直线y=x上方的区域是有用的,但是我们不妨对每个k都做一遍差分,
然后再前缀和一下得到它在哪些区间是不合法的。
这样就可以 O(N^3 + N*M) 完成本题了。
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int ha=1000000007;
int f[305][305],n,m,T;
int uu,vv,ban[305][305][305];
bool flag; inline int add(int x,int y){
x+=y;
return x>=ha?x-ha:x;
} inline void init(){
memset(f,0,sizeof(f));
memset(ban,0,sizeof(ban));
flag=0;
} inline void matrix(int px1,int py1,int px2,int py2,int num){
ban[num][px1][py1]++;
ban[num][px2+1][py1]--;
ban[num][px1][py2+1]--;
ban[num][px2+1][py2+1]++;
} inline void dp(){
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
for(int k=1;k<=n;k++) ban[i][j][k]+=ban[i][j-1][k]+ban[i][j][k-1]-ban[i][j-1][k-1]; for(int i=1;i<=n;i++) f[i][i]=f[i][i-1]=1;
f[n+1][n]=1; for(int len=1;len<n;len++)
for(int i=1,j;(j=i+len)<=n;i++)
for(int k=i;k<=j;k++) if(!ban[k][i][j]){
f[i][j]=add(f[i][j],f[i][k-1]*(ll)f[k+1][j]%ha);
}
} int main(){
scanf("%d",&T);
while(T--){
init();
scanf("%d%d",&n,&m);
while(m--){
scanf("%d%d",&uu,&vv);
if(uu<vv){
matrix(1,vv,uu,n,uu);
}
else if(uu>vv){
for(int j=vv+1;j<=uu;j++) matrix(1,uu,vv,n,j);
}
else flag=1;
} if(flag){
puts("0");
continue;
} dp(); printf("%d\n",f[1][n]);
} return 0;
}

  

 

Hdoj 5181 numbers的更多相关文章

  1. hdu 5181 numbers

    http://acm.hdu.edu.cn/showproblem.php?pid=5181 题意: 有一个栈,其中有n个数1~n按顺序依次进入栈顶,在某个时刻弹出. 其中m个限制,形如数字A必须在数 ...

  2. hdu 5181 numbers——思路+区间DP

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=5181 题解:https://www.cnblogs.com/Miracevin/p/10960717.ht ...

  3. hdoj 5522 Numbers

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5522 水题:暴力过 #include<stdio.h> #include<strin ...

  4. HDU.5181.numbers(DP)

    题目链接 参考. \(Description\) 将\(1,2,\cdots,n(n\leq 300)\)依次入栈/出栈,并满足\(m(m\leq 90000)\)个形如\(x\)要在\(y\)之前出 ...

  5. 找规律/数位DP HDOJ 4722 Good Numbers

    题目传送门 /* 找规律/数位DP:我做的时候差一点做出来了,只是不知道最后的 is_one () http://www.cnblogs.com/crazyapple/p/3315436.html 数 ...

  6. HDOJ(HDU).1058 Humble Numbers (DP)

    HDOJ(HDU).1058 Humble Numbers (DP) 点我挑战题目 题意分析 水 代码总览 /* Title:HDOJ.1058 Author:pengwill Date:2017-2 ...

  7. hdoj 2817 A sequence of numbers【快速幂】

    A sequence of numbers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  8. HDOJ(HDU) 2138 How many prime numbers(素数-快速筛选没用上、)

    Problem Description Give you a lot of positive integers, just to find out how many prime numbers the ...

  9. HDOJ 1058 Humble Numbers(打表过)

    Problem Description A number whose only prime factors are 2,3,5 or 7 is called a humble number. The ...

随机推荐

  1. Kali 安装VMtools(最新)

    老方法安装的VMtools不能进行主宿切换,下面是kali最新版安装VMtools的方法 一.换国内源&更新源 参考 Kali 2017更新源 二.安装VMtools apt-get inst ...

  2. getsupportfragmentmanager 没有这个方法

    让activity继承自fragmentactivity就行了.

  3. Redis实现之复制(二)

    PSYNC命令的实现 在Redis实现之复制(一)这一章中,我们介绍了PSYNC命令和它的工作机制,但一直没有说明PSYNC命令的参数以及返回值.现在,我们了解了运行ID.复制偏移量.复制积压缓冲区以 ...

  4. NopCommerce 导航菜单HTML静态处理以提高性能

    因网站要快速上线,有时候NopCommerce性能问题一直是困扰我们的最大因素,查找出来需要优化的部分代码进行修改重构是方法之一,我等非主流优化方式只为快速提高程序整体性能. 我以导航菜单为例,列出我 ...

  5. Falsk

    flask: 1.配置文件的几种方式: 1.app.config['DEBUG'] =True 2.app.config.from_pyfile("setting.py") 3.a ...

  6. python 二——函数、装饰器、生成器、面向对象编程(初级)

    本节内容 1.函数 2.装饰器 3.生成器 4.类 一.函数 函数式:将某功能代码封装到函数中,日后便无需重复编写,仅调用函数即可 面向对象:对函数进行分类和封装,让开发“更快更好更强...” 函数式 ...

  7. java中equals和==

    https://www.cnblogs.com/bluestorm/archive/2012/03/02/2377615.html

  8. 数据库路由中间件MyCat - 使用篇(1)

    此文已由作者张镐薪授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 基本概念 直接介绍概念太枯燥了,还是拿个和背景篇相似的例子介绍 业务场景:客户完成下单,快递员接受并更新运单 ...

  9. 33、Android Support兼容包详解(转载)

    原文转自:微信分享 2015-03-31 22:11 背景 来自于知乎上邀请回答的一个问题Android中AppCompat和Holo的一个问题?, 看来很多人还是对这些兼容包搞不清楚,那么干脆写篇博 ...

  10. leetcode 【 Pascal's Triangle 】python 实现

    题目: Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows = 5,R ...