numbers

Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 196608/196608 K (Java/Others)
Total Submission(s): 156    Accepted Submission(s): 50
Problem Description
 
Now you have a stack and n numbers 1,2,3,…,n.
These n numbers are pushed in the order and popped if the number is at the top of the stack.
You can read the sample to get more details.
This question is quite easy. Therefore I must give you some limits.
There are m limits, each is expressed as a pair<A,B> means the number A must be popped before B.
Could you tell me the number of ways that are legal in these limits?
I know the answer may be so large, so you can just tell me the answer mod 1000000007({10}^{9}+7).
 

Input
The first line contains an integer T(about 5),indicating the number of cases.
Each test case begins with two integers n(1 \leq n \leq 300) and m(1 \leq m \leq 90000).
Next m lines contains two integers A and B(1 \leq A \leq n,1 \leq B \leq n)
(P.S. there may be the same limits or contradict limits.)
 

Output
For each case, output an integer means the answer mod 1000000007.
 

Sample Input
5
1 0
5 0
3 2
1 2
2 3
3 2
2 1
2 3
3 3
1 2
2 3
3 1
 

Sample Output
1
42
1
2
0
 
Hint

The only legal pop-sequence of case 3 is 1,2,3. The legal pop-sequences of case 4 are 2,3,1 and 2,1,3.

 

Source

设f[i][j]为数字(i-j)的出栈方案数,显然我们可以枚举最后一个出栈的元素k,i<=k<=j。先把[i,k-1]出栈完了之后,把k放进去,然后再放[k+1,j]
并且出栈后再出k。
所以我们可以得到递推式 f[i][j]=Σf[i][k-1]*f[k+1][j] ,当然因为有限制这里的k显然不能取区间[i,j]的所有数。 当然A,B只能对 L<=min(A,B),R>=max(A,B)的f[L][R]产生影响。
我们发现当A<B时,只要k!=A就是合法的,因为出栈顺序是[i,k-1]->[k+1,j]->k;
而当A>B时,观察出栈顺序也可以发现只要k¢(B,A]就是合法的。 于是现在的问题变成了如何快速判断一个k在对于f[i][j]是否合法。。。。
我们可以发现的是,当把区间的左端点看成横坐标,区间的右端点看成纵坐标的时候,对于一组A、B
不合法的区域就是以(1,max(A,B))为左下角,(min(A,B),n)为右上角的矩形。
虽然这个坐标系只有在直线y=x上方的区域是有用的,但是我们不妨对每个k都做一遍差分,
然后再前缀和一下得到它在哪些区间是不合法的。
这样就可以 O(N^3 + N*M) 完成本题了。
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int ha=1000000007;
int f[305][305],n,m,T;
int uu,vv,ban[305][305][305];
bool flag; inline int add(int x,int y){
x+=y;
return x>=ha?x-ha:x;
} inline void init(){
memset(f,0,sizeof(f));
memset(ban,0,sizeof(ban));
flag=0;
} inline void matrix(int px1,int py1,int px2,int py2,int num){
ban[num][px1][py1]++;
ban[num][px2+1][py1]--;
ban[num][px1][py2+1]--;
ban[num][px2+1][py2+1]++;
} inline void dp(){
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
for(int k=1;k<=n;k++) ban[i][j][k]+=ban[i][j-1][k]+ban[i][j][k-1]-ban[i][j-1][k-1]; for(int i=1;i<=n;i++) f[i][i]=f[i][i-1]=1;
f[n+1][n]=1; for(int len=1;len<n;len++)
for(int i=1,j;(j=i+len)<=n;i++)
for(int k=i;k<=j;k++) if(!ban[k][i][j]){
f[i][j]=add(f[i][j],f[i][k-1]*(ll)f[k+1][j]%ha);
}
} int main(){
scanf("%d",&T);
while(T--){
init();
scanf("%d%d",&n,&m);
while(m--){
scanf("%d%d",&uu,&vv);
if(uu<vv){
matrix(1,vv,uu,n,uu);
}
else if(uu>vv){
for(int j=vv+1;j<=uu;j++) matrix(1,uu,vv,n,j);
}
else flag=1;
} if(flag){
puts("0");
continue;
} dp(); printf("%d\n",f[1][n]);
} return 0;
}

  

 

Hdoj 5181 numbers的更多相关文章

  1. hdu 5181 numbers

    http://acm.hdu.edu.cn/showproblem.php?pid=5181 题意: 有一个栈,其中有n个数1~n按顺序依次进入栈顶,在某个时刻弹出. 其中m个限制,形如数字A必须在数 ...

  2. hdu 5181 numbers——思路+区间DP

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=5181 题解:https://www.cnblogs.com/Miracevin/p/10960717.ht ...

  3. hdoj 5522 Numbers

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5522 水题:暴力过 #include<stdio.h> #include<strin ...

  4. HDU.5181.numbers(DP)

    题目链接 参考. \(Description\) 将\(1,2,\cdots,n(n\leq 300)\)依次入栈/出栈,并满足\(m(m\leq 90000)\)个形如\(x\)要在\(y\)之前出 ...

  5. 找规律/数位DP HDOJ 4722 Good Numbers

    题目传送门 /* 找规律/数位DP:我做的时候差一点做出来了,只是不知道最后的 is_one () http://www.cnblogs.com/crazyapple/p/3315436.html 数 ...

  6. HDOJ(HDU).1058 Humble Numbers (DP)

    HDOJ(HDU).1058 Humble Numbers (DP) 点我挑战题目 题意分析 水 代码总览 /* Title:HDOJ.1058 Author:pengwill Date:2017-2 ...

  7. hdoj 2817 A sequence of numbers【快速幂】

    A sequence of numbers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  8. HDOJ(HDU) 2138 How many prime numbers(素数-快速筛选没用上、)

    Problem Description Give you a lot of positive integers, just to find out how many prime numbers the ...

  9. HDOJ 1058 Humble Numbers(打表过)

    Problem Description A number whose only prime factors are 2,3,5 or 7 is called a humble number. The ...

随机推荐

  1. 【转】Oracle AWR 报告 每天自动生成并发送邮箱 Python脚本(一)

    Oracle 的AWR 报告能很好的提供有关DB性能的信息. 所以DBA 需要定期的查看AWR的报告. 有关AWR报告的说明参考: Oracle AWR 介绍 http://blog.csdn.net ...

  2. VBA连接MySQL数据库以及ODBC的配置(ODBC版本和MySQL版本如果不匹配会出现驱动和应用程序的错误)

    db_connected = False '获取数据库连接设置dsn_name = Trim(Worksheets("加载策略").Cells(2, 5).Value)  ---- ...

  3. 解决maven项目Invalid bound statement (not found)的方法

    用IDEA 做的ssm 的maven项目,登陆时出现上图问题. 原因是它读取不到DevUserMapper.xml文件和取它xml文件,后面查询在编译好的文件中,xml文件并没有引入进来,这就是导致出 ...

  4. Java消息中间件--初级篇

    一. 为什么使用消息中间件? 假设用户登录系统   传统方式 用户登录  调用短息服务   积分服务  日志服务等各种服务  如果短息服务出现问题就无法发送短信而且用户登录成功必须所有调用全部完成返回 ...

  5. 使用html进行浏览器判断,浏览器条件注释

    下面来点今天写东西的时候查资料,收集的关于使用html进行浏览器判断的一些资料: 条件注释的基本格式: <!--[if expression]>注释内容<![endif]--> ...

  6. 设计模式学习笔记——java中常用的设计模式

    单例设计模式(Singleton Pattern) 观察者模式(Observer Pattern) 工厂模式(Factory Pattern) 策略模式(Strategy Pattern) 适配器模式 ...

  7. python(或BAT脚本)自动执行adb shell以后的命令

    最近在用python做一个小工具,自动执行一些adb shell命令,使用subprocess.Popen来实现.   不过遇到个问题就是执行adb shell后就无法执行后面adb shell里的命 ...

  8. 基于web自动化测试框架的设计与开发(讲解演示PPT)

  9. Python-S9-Day115——Flask Web框架基础

    01 今日内容概要 02 内容回顾 03 Flask框架:配置文件导入原理 04 Flask框架:配置文件使用 05 Flask框架:路由系统 06 Flask框架:请求和响应相关 07 示例:学生管 ...

  10. 用户注册,登录API 接口

    Controer: <?php /** * @name UserController * @author pangee * @desc 用户控制器 */ class UserController ...