P1349 广义斐波那契数列

https://www.luogu.org/problemnew/show/P1349

题目描述

广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列。今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an除以m的余数。

输入输出格式

输入格式:

输入包含一行6个整数。依次是p,q,a1,a2,n,m,其中在p,q,a1,a2整数范围内,n和m在长整数范围内。

输出格式:

输出包含一行一个整数,即an除以m的余数。

输入输出样例

输入样例#1: 复制

1 1 1 1 10 7
输出样例#1: 复制

6

说明

数列第10项是55,除以7的余数为6。

矩阵快速幂求long long级斐波那契(变形)。

f[n]=a*f[n-1]+b*f[n-2], f[1]=a1,f[2]=a2, MOD=...

得:

其他变形:

1.f(n)=a*f(n-1)+b*f(n-2)+c;(a,b,c是常数)

2.f(n)=c^n-f(n-1) ;(c是常数)

以及找循环节问题:http://blog.csdn.net/ACdreamers/article/details/25616461

前n项和:

1.当f[1]=1,f[2]=1,f[i]=f[i-1]+f[i-2](i>2)时,

S(n)=f(n+2)-1

2.推广:

本题AC代码:

#include<stdio.h>
#include<string.h>
#define MAX 10
typedef long long ll; ll p,q,MOD;
struct mat{
ll a[MAX][MAX];
}; mat operator *(mat x,mat y) //重载*运算
{
mat ans;
memset(ans.a,,sizeof(ans.a));
for(int i=;i<=;i++){
for(int j=;j<=;j++){
for(int k=;k<=;k++){
ans.a[i][j]+=x.a[i][k]*y.a[k][j];
ans.a[i][j]%=MOD;
}
}
}
return ans;
}
mat qsortMod(mat a,ll n) //矩阵快速幂
{
mat t;
t.a[][]=p;t.a[][]=q; //变式的系数
t.a[][]=;t.a[][]=;
while(n){
if(n&) a=t*a; //矩阵乘法不满足交换律,t在前
n>>=;
t=t*t;
}
return a;
}
int main()
{
ll a1,a2,n;
scanf("%lld%lld%lld%lld%lld%lld",&p,&q,&a1,&a2,&n,&MOD);
if(n==) printf("%lld\n",a1);
else if(n==) printf("%lld\n",a2);
else{
mat a;
a.a[][]=a2;a.a[][]=;
a.a[][]=a1;a.a[][]=; //数列的前两项
a=qsortMod(a,n-);
printf("%lld\n",a.a[][]);
}
return ;
}

洛谷P1349 广义斐波那契数列(矩阵快速幂)的更多相关文章

  1. 洛谷——P1349 广义斐波那契数列(矩阵加速)

    P1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如$an=p\times a_{n-1}+q\times a_{n-2}$?的数列.今给定数列的两系数$p$和$q$,以及数列的最前两项 ...

  2. 洛谷——P1349 广义斐波那契数列

    题目描述 广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an除以m的余数. 输入输出格 ...

  3. 洛谷P1349 广义斐波那契数列

    传送门 话说谁能告诉我矩阵怎么用latex表示…… 差不多就这样 //minamoto #include<iostream> #include<cstdio> #include ...

  4. 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]

    P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...

  5. P1349 广义斐波那契数列(矩阵加速)

    P1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如an=pan-1+qan-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an ...

  6. P1349 广义斐波那契数列(矩阵乘法)

    题目 P1349 广义斐波那契数列 解析 把普通的矩阵乘法求斐波那契数列改一改,随便一推就出来了 \[\begin{bmatrix}f_2\\f_1 \end{bmatrix}\begin{bmatr ...

  7. 洛谷P1962 斐波那契数列(矩阵快速幂)

    题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...

  8. HDU4549 M斐波那契数列 矩阵快速幂+欧拉函数+欧拉定理

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Sub ...

  9. 51nod1242 斐波那契数列 矩阵快速幂

    1242 斐波那契数列的第N项 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 #include<stdio.h> #define mod 100000000 ...

随机推荐

  1. Java 内存分配全面浅析(转)

    本文将由浅入深详细介绍Java内存分配的原理,以帮助新手更轻松的学习Java.这类文章网上有很多,但大多比较零碎.本文从认知过程角度出发,将带给读者一个系统的介绍. 进入正题前首先要知道的是Java程 ...

  2. Learning an Optimal Policy: Model-free Methods

    http://www.mit.edu/~9.54/fall14/slides/Reinforcement%20Learning%202-Model%20Free.pdf [基于所有.单个样本]

  3. 使用Retrofit发送POST请求提交JSON数据

    Retrofit官网:https://square.github.io/retrofit/ 示例如下 HttpService.java import okhttp3.RequestBody; impo ...

  4. BZOJ3878: [Ahoi2014&Jsoi2014]奇怪的计算器

    BZOJ3878: [Ahoi2014&Jsoi2014]奇怪的计算器 Description [故事背景] JYY有个奇怪的计算器,有一天这个计算器坏了,JYY希望你能帮助他写 一个程序来模 ...

  5. High Performance Browser Networking

    Chapter 1. Primer on Latency and Bandwidth As a result, to improve performance of our applications, ...

  6. Python的pymysql模块

    PyMySQL是在Python3.x版本中用于连接MySQL服务器的一个库,Python2中则使用MySQLDB. 1.基本语法 # 导入pymysql模块 import pymysql # 连接da ...

  7. POJ2104 K-th Number (子区间内第k大的数字)【划分树算法模板应用】

    K-th Number Time Limit: 20000MS   Memory Limit: 65536K Total Submissions: 40920   Accepted: 13367 Ca ...

  8. SDUT 2766 小明传奇2

    小明传奇2 Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描述 小明不但创建了自己的商店而且选择了建立了自己的货币系统. 传统地,一个 ...

  9. Dubbo动态负载均衡(socket环境实现)

    消费者 去注册中心获取信息 然后缓存到本地 如果有生产者某个服务宕机了  会通过通知的方式告知 (订阅的方式) 微服务rpc远程调用框架中,服务的负载均衡都是采用本地负载均衡的,Spring Clou ...

  10. 在PyCharm上创建Django项目

    声明:此Django分类下的教程是追梦人物所有,地址http://www.jianshu.com/u/f0c09f959299,本人写在此只是为了巩固复习使用 首先我们在Pycharm上新建一个Dja ...