cf 512D - Fox And Travelling
题目大意
给定一颗\(n\le 100\)个点的图,可以进行随机游走,求游走\(k=0...n\)个点的方案数
游走的规则是:每次只能访问一个度数\(\le 1\)的点,并将其删除
分析
看完傻眼
问题1:随便顺序
问题2:稍微分析一下,发现环内的点不能选,甚至两个环的路径上的点都不能选
做法
对于问题2:并不需要缩点加奇怪处理找到不能选的点,只需要topu即可
可以发现,不可选集合会将联通快分成若干棵树,且不存在一棵树被不可选集合夹在中间的情况(这样的话这棵树就不可选,矛盾),于是划分出来的树一定所有节点的可选
整道题中,树有两类
1:有根树,即树根与一个不可选点相连,这时必须选完树中所有点才能选树根
2:无根树,即该联通快内不存在不可选点,此时哪个节点最后选择都可以
对于问题1:依然是树形背包dp
f[i][j]表示\(i\)子树中,选了\(j\)个点的方案数
dp合并的时候乘上组合数就好了
还是老问题:
\]
对于有根树是这样
那么对于无根树呢
我们枚举哪个节点最后删除,即对于树上每个点作为根求一次,dp值对应位加起来
此时对于\(n\)个点删除了\(i\)个点的情况,\(n-i\)个点作为根的时候都统计到了它,除一下
特别的,对于\(n\)个点删除了\(n\)个点的情况,不用除(也不能除n-n=0),因为这样既没有算重,也没有算漏,每个点最后删除的情况都枚举了,恰好就是所有情况
姿势
以后背包dp转移都可以写结构体,方便快捷
for循环边界思考过程:
枚举\(i+j=k\)的\(k\),再枚举\(i\)
满足不等式\(0\le i\le n\),\(0\le k-i \le m\)
以及组合数注意C(x,y)时特判x<y否则越界
solution
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <cmath>
#include <algorithm>
#include <vector>
using namespace std;
const int M=107;
const int N=1e4+7;
const int Q=1e9+9;
typedef long long LL;
inline int pls(int x,int y){return ((LL)x+y)%Q;}
inline int mns(int x,int y){return pls(x,Q-y);}
inline int mul(int x,int y){return 1LL*x*y%Q;}
inline int ri(){
int x=0;bool f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=0;
for(;isdigit(c);c=getchar()) x=x*10+c-48;
return f?x:-x;
}
int n,m;
int inv[M],fac[M],ifac[M];
int vis[M],ok[M],deg[M];
vector<int>pt;
inline int C(int x,int y){return (x>=y) ? mul(fac[x],mul(ifac[y],ifac[x-y])) : 0;}
void init(){
int i;
for(inv[1]=1,i=2;i<=n;i++) inv[i]=mul(inv[Q%i],Q-Q/i);
for(fac[0]=1,i=1;i<=n;i++) fac[i]=mul(fac[i-1],i);
for(ifac[0]=1,i=1;i<=n;i++) ifac[i]=mul(ifac[i-1],inv[i]);
}
struct vec{
int g[M],te;
struct edge{
int y,nxt;
edge(int _y=0,int _nxt=0){y=_y,nxt=_nxt;}
}e[N<<1];
vec(){memset(g,0,sizeof(g));te=1;}
inline void push(int x,int y){e[++te]=edge(y,g[x]);g[x]=te;}
inline void push2(int x,int y){push(x,y);push(y,x);}
inline int& operator () (int x){return g[x];}
inline edge& operator [] (int x){return e[x];}
}e;
struct node{
int f[M],n;
node(){n=0;memset(f,0,sizeof f);}
void clear(){memset(f,0,sizeof f);n=0;}
inline int& operator [] (int x){return f[x];}
node operator *=(node &y){
int i,j,tp;
for(i=n+y.n;i>=0;i--){
for(tp=0,j=max(i-n,0);j<=min(i,y.n);j++)
tp=pls( tp, mul(C(i,j),mul(y[j],f[i-j])) );
f[i]=tp;
}
n+=y.n;
}
node operator +=(node &y){
int i;
for(i=0;i<=y.n;i++) f[i]=pls(f[i],y[i]);
n=max(n,y.n);
}
}ans,sum,f[M];
void topu(){
int i,h=0,t=0,x,p,y;
static int q[M];
for(i=1;i<=n;i++) if(deg[i]<=1) q[++t]=i;
while(h!=t){
x=q[++h];
ok[x]=1;
for(p=e(x);p;p=e[p].nxt){
y=e[p].y;
if(!ok[y]&&(--deg[y])<=1) q[++t]=y;
}
}
}
void dfs(int x,int fa){
vis[x]=1;
f[x].clear(); f[x][0]=1;
int p,y;
for(p=e(x);p;p=e[p].nxt)
if((y=e[p].y)!=fa){
dfs(y,x);
f[x]*=f[y];
}
f[x].n++;
f[x][f[x].n]=f[x][f[x].n-1];
}
void getpt(int x,int fa){
pt.push_back(x);
for(int p=e(x);p;p=e[p].nxt) if(e[p].y!=fa) getpt(e[p].y,x);
}
void gao(int x,int fa){
if(fa!=0){
dfs(x,fa);
ans*=f[x];
}
else{
int i,num;
pt.clear(); getpt(x,0); sum.clear();
for(i=0;i<pt.size();i++){
dfs(pt[i],0);
sum+=f[pt[i]];
}
for(i=0;i<pt.size();i++) sum[i]=mul(sum[i],inv[pt.size()-i]);
ans*=sum;
}
}
void solve(){
int i,x,y;
ans[0]=1;
for(i=1;i<=m;i++){
x=e[i<<1].y;
y=e[i<<1^1].y;
if(ok[x]!=ok[y])
ok[x] ? gao(x,y) : gao(y,x);
}
for(i=1;i<=n;i++)
if(ok[i]&&!vis[i]) gao(i,0);
}
int main(){
int i,x,y;
n=ri(),m=ri();
for(i=1;i<=m;i++){
x=ri(),y=ri();
deg[x]++,deg[y]++;
e.push2(x,y);
}
init();
topu();
solve();
for(i=0;i<=n;i++) printf("%d\n",ans.f[i]);
return 0;
}
cf 512D - Fox And Travelling的更多相关文章
- Codeforces 512D - Fox And Travelling(树上背包)
题面传送门 题意: 给出一张无向图,每次你可以选择一个度数 \(\leq 1\) 的点并将其删除. 问对于 \(k=0,1,2,\dots,n\),有多少个删除 \(k\) 个点的序列,答案模 \(1 ...
- CF 371B Fox Dividing Cheese[数论]
B. Fox Dividing Cheese time limit per test 1 second memory limit per test 256 megabytes input standa ...
- CF 510b Fox And Two Dots
Fox Ciel is playing a mobile puzzle game called "Two Dots". The basic levels are played on ...
- [CF #290-C] Fox And Names (拓扑排序)
题目链接:http://codeforces.com/contest/510/problem/C 题目大意:构造一个字母表,使得按照你的字母表能够满足输入的是按照字典序排下来. 递归建图:竖着切下来, ...
- cf E. Fox and Card Game
http://codeforces.com/contest/389/problem/E 题意:给你n个序列,然后两个人x,y,两个人玩游戏,x从序列的前面取,y从序列的后面取,两个人都想自己得到的数的 ...
- cf C. Fox and Box Accumulation
题意:输入一个n,然后输入n个数,问你可以划分多少个序列,序列为:其中一个数为c,在它的前面最多可以有c个数. 思路:先排序,然后对于每一个数逐步的找没有被用过的数,且这个数可以符合条件,然后如果没有 ...
- cf B. Fox Dividing Cheese
http://codeforces.com/contest/371/problem/B #include <cstdio> #include <iostream> #inclu ...
- IOI2020 国家集训队作业 泛做
题号 题目名称 rating 算法 完成情况 CF504E Misha and LCP on Tree CF505E Mr.Kitayuta vs. Bamboos CF506E Mr.Kitayut ...
- CF Fox And Names (拓扑排序)
Fox And Names time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...
随机推荐
- 黑马基础阶段测试题:定义一个int类型的数组,数组中元素为{5,7,3,9,4}。求出数组中的最小值,并判断最小值是否为偶数,如果是偶数则输出“最小值为偶数”,如果不是偶数则输出“最小值为奇数”。打印如下:
package com.swift; import java.util.Arrays; public class ArrayTest { public static void main(String[ ...
- jqweui 中的tabbar导航
最近做微信的服务号项目,用的jqweui作为主要的ui,但是对于用惯了ele ui的开发者来说,文档貌似有点不友好.真是很让人头疼! 所以结合着自己做的项目,随便写一点东西. 比如说,tabbar导航 ...
- LGTB 学分块
总时间限制: 10000ms 单个测试点时间限制: 1000ms 内存限制: 65536kB 描述 LGTB 最近在学分块,但是他太菜了,分的块数量太多他就混乱了,所以只能分成 3 块 今天他得 ...
- (78)zabbix值缓存(value cache)说明
在zabbix-2.2版本之前,zabbix计算trigger与calculated/aggregate值都是直接通过sql语句查询并处理出来的结果,为了提高这块的性能与效率,zabbix引入了val ...
- 《TensorFlow实战》中AlexNet卷积神经网络的训练中
TensorFlow实战中AlexNet卷积神经网络的训练 01 出错 TypeError: as_default() missing 1 required positional argument: ...
- Fakeapp 入门教程(3):参数篇
参数可以让软件自由度更高.Fakeapp的参数并不算多,但是也非常使用.本文就讲解下几个重要的参数.参数设置界面可以通过点击SETTINGS打开. 参数修改无需点击保存,一旦修改直接生效. Proce ...
- json数据格式及json格式化工具推荐
JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式,采用完全独立于编程语言的文本格式来存储和表示数据. 易于人阅读和编写,同时也易于机器解析和生成. XML也 ...
- SHELL脚本的常规命令
**shell脚本的执行方式: 方法一:首先赋予x权限,再输入相对路径或绝对路径,./testdot.sh或/root/shell/testdot.sh 方法二:sh testdot.sh(会新开一个 ...
- Java中创建(实例化)对象的五种方式
Java中创建(实例化)对象的五种方式1.用new语句创建对象,这是最常见的创建对象的方法. 2.通过工厂方法返回对象,如:String str = String.valueOf(23); 3.运用反 ...
- JMX浅谈
一 JMX 是什么? JMX(Java Management Extensions,即Java管理扩展) JMX在Java编程语言中定义了应用程序以及网络管理和监控的体系结构.设计模式.应用程序接口以 ...