GSS4 - Can you answer these queries IV || luogu4145上帝造题的七分钟2 / 花神游历各国 (线段树)
GSS4 - Can you answer these queries IV || luogu4145上帝造题的七分钟2 / 花神游历各国
GSS4 - Can you answer these queries IV
题目链接:https://www.luogu.org/problemnew/show/SP2713
线段树经典题目,然而被我用分块A了.
对于区间开根号,\(1e18\)最多会被开\(6\)次就会成为\(1\),成为\(1\)后,再开根号也是\(1\),0开根号也是0,线段树(分块)维护区间所有的数是否全部小于等于1,如果不是,就暴力更新,如果是,那就不要更新这个区间.
时间复杂度\(O(\sqrt n * n)\)
分块CODE:
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
#define ll long long
const int maxN = 100000 + 7;
ll a[maxN];
bool is_sqrt[maxN];
int L[maxN],R[maxN],belong[maxN];
ll sum[maxN];
int num[maxN];
inline ll read() {
ll x = 0,f = 1;char c = getchar();
while(c < '0' || c > '9') {if(c == '-')f = -1;c = getchar();}
while(c >= '0' && c <= '9') {x = x * 10 + c - '0';c = getchar();}
return x * f;
}
ll Query(int l,int r) {
int b_l = belong[l],b_r = belong[r];
ll ans = 0;
if(b_l == b_r) {
for(int i = l;i <= r;++ i)
ans += a[i];
return ans;
}
for(int i = b_l + 1;i < b_r;++ i) ans += sum[i];
for(int i = l;i <= R[b_l];++ i) ans += a[i];
for(int i = L[b_r];i <= r;++ i) ans += a[i];
return ans;
}
void Inter_sqrt(int l,int r) {
int b_l = belong[l],b_r = belong[r];
if(b_l == b_r) {
if(is_sqrt[b_l]) return;
for(int i = l;i <= r;++ i) {
if(a[i] == 1) continue;
sum[b_l] -=a[i];
a[i] = sqrt(a[i]);
sum[b_l] += a[i];
if(a[i] == 1) num[b_l] ++;
}
if(num[b_l] == R[b_l] - L[b_l] + 1) is_sqrt[b_l] = true;
return;
}
for(int i = b_l + 1;i < b_r;++ i) {
if(is_sqrt[i]) continue;
for(int j = L[i];j <= R[i];++ j) {
if(a[j] == 1) continue;
sum[i] -=a[j];
a[j] = sqrt(a[j]);
sum[i] += a[j];
if(a[j] == 1) num[i] ++;
}
if(num[i] == R[i] - L[i] + 1) is_sqrt[i] = true;
}
for(int i = l;i <= R[b_l];++ i) {
if(a[i] == 1) continue;
sum[b_l] -=a[i];
a[i] = sqrt(a[i]);
sum[b_l] += a[i];
if(a[i] == 1) num[b_l] ++;
}
if(num[b_l] == R[b_l] - L[b_l] + 1) is_sqrt[b_l] = true;
for(int i = L[b_r];i <= r;++ i) {
if(a[i] == 1) continue;
sum[b_r] -=a[i];
a[i] = sqrt(a[i]);
sum[b_r] += a[i];
if(a[i] == 1) num[b_r] ++;
}
if(num[b_r] == R[b_r] - L[b_r] + 1) is_sqrt[b_r] = true;
}
int main() {
int tot = 0;
int n;
while(scanf("%d",&n) == 1) {
printf("Case #%d:\n",++ tot);
memset(num,0,sizeof(num));
memset(L,0,sizeof(L));
memset(R,0,sizeof(R));
memset(sum,0,sizeof(sum));
memset(is_sqrt,0,sizeof(is_sqrt));
int q = sqrt(n);
for(int i = 1;i <= n;++ i)
a[i] = read();
for(int i = 1;i <= n;++ i){
belong[i] = i / q + 1;
sum[belong[i]] += a[i];
if(a[i] == 1) num[belong[i]] ++;
}
for(int i = 1;i <= n;++ i) R[belong[i]] = i;
for(int i = n;i >= 1;-- i) L[belong[i]] = i;
int m = read();
int opt,l,r;
while(m --) {
opt = read();l = read();r = read();
if(l > r) std::swap(l,r);
if(opt) printf("%lld\n",Query(l,r));
else Inter_sqrt(l,r);
}
}
return 0;
}
luogu4145上帝造题的七分钟2 / 花神游历各国
用分块很难水过,我们用线段树维护区间最大值即可.
线段树CODE:
#include <algorithm>
#include <iostream>
#include <cstdio>
#include <cmath>
#define max(a,b) a > b ? a : b
#define ll long long
const ll maxN = 100000 + 7;
using namespace std;
struct Node{
ll l,r;
ll sum;
ll maxx;
}tree[maxN << 2];
ll a[maxN];
void swap(ll &a,ll &b) {
ll k = b;
b = a;
a = k;
}
inline ll read() {
ll x = 0,f = 1;char c = getchar();
while(c < '0' || c > '9') {if(c == '-')f = -1;c = getchar();}
while(c >= '0' && c <= '9') {x = x * 10 + c - '0';c = getchar();}
return x * f;
}
void updata(ll now) {
tree[now].sum = tree[now << 1].sum + tree[now << 1 | 1].sum;
tree[now].maxx = max(tree[now << 1 | 1].maxx,tree[now << 1].maxx);
}
void build(ll l,ll r,ll now) {
tree[now].l = l;
tree[now].r = r;
if(l == r) {
tree[now].sum = a[l];
tree[now].maxx = a[l];
return ;
}
ll mid = (l + r) >> 1;
build(l,mid,now << 1);
build(mid + 1,r,now << 1 | 1);
updata(now);
}
ll Query(ll l,ll r,ll now) {
if(tree[now].l >= l && tree[now].r <= r) return tree[now].sum;
ll mid = (tree[now].l + tree[now].r) >> 1;
ll sum = 0;
if(l <= mid) sum += Query(l,r,now << 1);
if(r > mid) sum += Query(l,r,now << 1 | 1);
return sum;
}
void work(ll now) {
if(tree[now].l == tree[now].r) {
ll L = tree[now].l;
a[L] = sqrt(a[L]);
tree[now].sum = a[L];
tree[now].maxx = a[L];
return;
}
if(tree[now << 1].maxx > 1) work(now << 1);
if(tree[now << 1 | 1].maxx > 1) work(now << 1 | 1);
updata(now);
return ;
}
void Inter_sqrt(ll l,ll r,ll now) {
if(tree[now].l >= l && tree[now].r <= r) {
if( tree[now].maxx > 1 ) work(now);
return ;
}
ll mid = (tree[now].l + tree[now].r) >> 1;
if(l <= mid) Inter_sqrt(l,r,now << 1);
if(r > mid) Inter_sqrt(l,r,now << 1 | 1);
updata(now);
return;
}
int main() {
ll n = read();
for(ll i = 1;i <= n;++ i)
a[i] = read();
build(1,n,1);
ll m = read();
ll opt,l,r;
while(m --) {
opt = read();l = read();r = read();
if(l > r)swap(l,r);
if(opt == 1) printf("%lld\n",Query(l,r,1));
else Inter_sqrt(l,r,1);
}
return 0;
}
/*
10
1 2 3 4 5 6 7 8 9 10
5
0 1 10
1 1 10
1 1 5
0 5 8
1 4 8
*/
GSS4 - Can you answer these queries IV || luogu4145上帝造题的七分钟2 / 花神游历各国 (线段树)的更多相关文章
- 线段树 SP2713 GSS4 - Can you answer these queries IV暨 【洛谷P4145】 上帝造题的七分钟2 / 花神游历各国
SP2713 GSS4 - Can you answer these queries IV 「题意」: n 个数,每个数在\(10^{18}\) 范围内. 现在有「两种」操作 0 x y把区间\([x ...
- 洛谷P4145 上帝造题的七分钟2 / 花神游历各国(重题:洛谷SP2713 GSS4 - Can you answer these queries IV)
题目背景 XLk觉得<上帝造题的七分钟>不太过瘾,于是有了第二部. 题目描述 "第一分钟,X说,要有数列,于是便给定了一个正整数数列. 第二分钟,L说,要能修改,于是便有了对一段 ...
- 上帝造题的七分钟2/花神游历各国/GSS4 线段树维护区间开方 By cellur925
题目传送门 或者 另一个传送门 询问区间和都好说.但是开方?? 其实是这样的,一个数(1e9)以内连续开方6次就会变成1,于是我们就可在开方操作上进行暴力修改.暴力修改的意思其实也就是找到叶子节点进行 ...
- 【luogu4145】上帝造题的七分钟2 / 花神游历各国--区间开根-线段树
题目背景 XLk觉得<上帝造题的七分钟>不太过瘾,于是有了第二部. 题目描述 "第一分钟,X说,要有数列,于是便给定了一个正整数数列. 第二分钟,L说,要能修改,于是便有了对一段 ...
- luogu4145 上帝造题的七分钟2 (线段树)
题意:给一个数列,维护两个操作,区间开根号.询问区间和 注意到1e12开根号六次后就变成1,而且根号1等于1 也就是说,就算我们用单点修改,只要跳过1,那么修改的次数最多也就是6n 那么维护一个区间最 ...
- 题解【luogu4145 上帝造题的七分钟2(花神游历各国)】
题目大意: 一个序列,支持区间开方与求和操作. 算法:线段树实现开方修改与区间求和 分析: 显然,这道题的求和操作可以用线段树来维护 但是如何来实现区间开方呢 大家有没有这样的经历:玩计算器的时候,把 ...
- GSS4 - Can you answer these queries IV(线段树懒操作)
GSS4 - Can you answer these queries IV(线段树懒操作) 标签: 线段树 题目链接 Description recursion有一个正整数序列a[n].现在recu ...
- SP2713 GSS4 - Can you answer these queries IV(线段树)
传送门 解题思路 大概就是一个数很少次数的开方会开到\(1\),而\(1\)开方还是\(1\),所以维护一个和,维护一个开方标记,维护一个区间是否全部为\(1/0\)的标记.然后每次修改时先看是否有全 ...
- SPOJ GSS4 Can you answer these queries IV
Time Limit: 500MS Memory Limit: 1572864KB 64bit IO Format: %lld & %llu Description You are g ...
随机推荐
- IT兄弟连 JavaWeb教程 JSP内置对象1
JSP内置对象定义 JSP提供了由容器实现和管理的内置对象,也可以称之为隐含对象,这些内置对象不需要通过JSP页面编写来实例化,在所有的JSP页面中都可以直接使用,它们起到了简化页面的作用,JSP的内 ...
- APP上传
原文网址: http://blog.csdn.net/ayangcool 前言:作为一名IOS开发者,把开发出来的App上传到App Store是必须的.下面就来详细介绍下具体流程. 1.打开苹果开发 ...
- 多线程 NSThread 了解
用NSThread创建子线程的3种方法 // DYFViewController.m // 623-02-pthread // // Created by dyf on 14-6-23. / ...
- 考虑实现Comparable接口
考虑实现Comparable接口 compareTo方法没有在Object中声明.相反,它是Comparable接口中唯一的方法.compareTo方法不但允许进行简单的等同性比较,而且允许执行顺 ...
- 新装centos 6.5 基本配置
开机自动联网 vi /etc/sysconfig/network-scripts/ifcfg-eth0; 将ONBOOT=no,改为ONBOOT=yes,保存退出 开机直接进入命令行模式 vi /et ...
- javascript 数组、json连接
json(或数组).concat(需要添加的json(或数组))
- [软件工程基础]PhyLab 技术规格说明书
由于暂不对后端有所改变,因此该部分技术规格说明书复用 Default 的技术规格说明书. 由于现阶段对于 Laravel 框架不熟悉,以及对于是否使用已有的轮子或者造轮子实现预想的功能还不清晰,因此暂 ...
- [JSOI2009]密码
Description Input Output Sample Input 10 2 hello world Sample Output 2 helloworld worldhello HINT 一看 ...
- HDU4089(概率dp)
题解 要点: 1.转移方程分三段,这个……有点复杂但是还好吧……大概就是求啥设啥,然后只通过可行的状态过来.在纸上记一记. 2.每层里面必须先求dp[i][i],简直就是我求我自己……用类似进制数那种 ...
- JetSpeed2因dom4j包冲突导致PSML页面文件数据丢失
使用JetSpeed2进行二次开发时突然出现在保存Portlet配置信息时出现PSML页面文件数据丢失的情况,几经测试,最终发现是因为Portlet中的dom4j.jar与jetspeed应用中的do ...