ACM学习历程——UVA11234 Expressions(栈,队列,树的遍历,后序遍历,bfs)
Description

Problem E: Expressions2007/2008 ACM International Collegiate Programming Contest University of Ulm Local Contest
Problem E: Expressions
Arithmetic expressions are usually written with the operators in between the two operands (which is called infix notation). For example, (x+y)*(z-w) is an arithmetic expression in infix notation. However, it is easier to write a program to evaluate an expression if the expression is written in postfix notation (also known as reverse polish notation). In postfix notation, an operator is written behind its two operands, which may be expressions themselves. For example, x y + z w - * is a postfix notation of the arithmetic expression given above. Note that in this case parentheses are not required.
To evaluate an expression written in postfix notation, an algorithm operating on a stack can be used. A stack is a data structure which supports two operations:
- push: a number is inserted at the top of the stack.
- pop: the number from the top of the stack is taken out.
During the evaluation, we process the expression from left to right. If we encounter a number, we push it onto the stack. If we encounter an operator, we pop the first two numbers from the stack, apply the operator on them, and push the result back onto the stack. More specifically, the following pseudocode shows how to handle the case when we encounter an operator O:
a := pop();
b := pop();
push(b O a);
The result of the expression will be left as the only number on the stack.
Now imagine that we use a queue instead of the stack. A queue also has a push and pop operation, but their meaning is different:
- push: a number is inserted at the end of the queue.
- pop: the number from the front of the queue is taken out of the queue.
Can you rewrite the given expression such that the result of the algorithm using the queue is the same as the result of the original expression evaluated using the algorithm with the stack?
Input Specification
The first line of the input contains a number T (T ≤ 200). The following T lines each contain one expression in postfix notation. Arithmetic operators are represented by uppercase letters, numbers are represented by lowercase letters. You may assume that the length of each expression is less than 10000 characters.
Output Specification
For each given expression, print the expression with the equivalent result when using the algorithm with the queue instead of the stack. To make the solution unique, you are not allowed to assume that the operators are associative or commutative.
Sample Input
2
xyPzwIM
abcABdefgCDEF
Sample Output
wzyxIPM
gfCecbDdAaEBF 根据题目意思,运算符是二元的,故想到使用二叉树结构来存放所有元素。
根据题目意思,读入二叉树的过程是一个后序遍历的过程,故使用题目描述中的栈结构进行建树。
根据题目意思,输出过程是从树的最下层网上,一层层将树输出。
考虑到此处使用的是指针,故没有使用STL里面的队列,构造了Queue类,使用了循环队列。 代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <set>
#include <map>
#include <vector>
#include <queue>
#include <string>
#define inf 0x3fffffff
#define eps 1e-10 using namespace std; struct node
{
char val;
node *left;
node *right;
}; struct Queue
{
node *v[10005];
int top;
int rear;
const int N = 10005;
void Init()
{
top = 0;
rear = 0;
}
void Pop()
{
top = (top+1) % N;
}
node *Front()
{
return v[top];
}
void Push(node * a)
{
v[rear] = a;
rear = (rear+1) % N;
}
bool Empty()
{
if (top != rear)
return 0;
else
return 1;
}
}q; node *head, *Stack[10005];
int top; node *Create()
{
top = 0;
char ch;
for (;;)
{
ch = getchar();
if (ch == '\n')
{
return Stack[0];
}
if (ch >= 'a' && ch <= 'z')
{
node *k;
k = (node *)malloc(sizeof(node));
k->val = ch;
k->left = NULL;
k->right = NULL;
Stack[top++] = k;
}
else
{
node *k;
k = (node *)malloc(sizeof(node));
k->val = ch;
k->left = Stack[top-2];
k->right = Stack[top-1];
top -= 2;
Stack[top++] = k;
}
}
} void bfs()
{
q.Init();
q.Push(head);
top = 0;
while (!q.Empty())
{
Stack[top] = q.Front();
q.Pop();
if (Stack[top]->left != NULL)
{
q.Push(Stack[top]->left);
q.Push(Stack[top]->right);
}
top++;
}
} void Output()
{
for (int i = top-1; i >= 0; --i)
printf("%c", Stack[i]->val);
printf("\n");
} int main()
{
//freopen ("test.txt", "r", stdin);
int T;
scanf("%d", &T);
getchar();
for (int times = 1; times <= T; ++times)
{
head = Create();
bfs();
Output();
}
return 0;
}
ACM学习历程——UVA11234 Expressions(栈,队列,树的遍历,后序遍历,bfs)的更多相关文章
- 二叉树 Java 实现 前序遍历 中序遍历 后序遍历 层级遍历 获取叶节点 宽度 ,高度,队列实现二叉树遍历 求二叉树的最大距离
数据结构中一直对二叉树不是很了解,今天趁着这个时间整理一下 许多实际问题抽象出来的数据结构往往是二叉树的形式,即使是一般的树也能简单地转换为二叉树,而且二叉树的存储结构及其算法都较为简单,因此二叉树显 ...
- 剑指Offer的学习笔记(C#篇)-- 平衡二叉树(二叉树后序遍历递归详解版)
题目描述 输入一棵二叉树,判断该二叉树是否是平衡二叉树. 一 . 题目分析 首先要理解一个概念:什么是平衡二叉树,如果某二叉树中任意的左右子树深度相差不超过1,那么他就是一颗平衡二叉树.如下图: 所以 ...
- ACM学习历程—HDU 5289 Assignment(线段树 || RMQ || 单调队列)
Problem Description Tom owns a company and he is the boss. There are n staffs which are numbered fro ...
- ACM学习历程—HDU 2795 Billboard(线段树)
Description At the entrance to the university, there is a huge rectangular billboard of size h*w (h ...
- 利用树的先序和后序遍历打印 os 中的目录树
[0]README 0.1)本代码均为原创,旨在将树的遍历应用一下下以加深印象而已:(回答了学习树的遍历到底有什么用的问题?)你对比下linux 中的文件树 和我的打印结果就明理了: 0.2)我们采用 ...
- 二叉树中序遍历,先序遍历,后序遍历(递归栈,非递归栈,Morris Traversal)
例题 中序遍历94. Binary Tree Inorder Traversal 先序遍历144. Binary Tree Preorder Traversal 后序遍历145. Binary Tre ...
- ACM学习历程—SNNUOJ 1110 传输网络((并查集 && 离线) || (线段树 && 时间戳))(2015陕西省大学生程序设计竞赛D题)
Description Byteland国家的网络单向传输系统可以被看成是以首都 Bytetown为中心的有向树,一开始只有Bytetown建有基站,所有其他城市的信号都是从Bytetown传输过来的 ...
- 前、中、后序遍历随意两种是否能确定一个二叉树?理由? && 栈和队列的特点和区别
前序和后序不能确定二叉树理由:前序和后序在本质上都是将父节点与子结点进行分离,但并没有指明左子树和右子树的能力,因此得到这两个序列只能明确父子关系,而不能确定一个二叉树. 由二叉树的中序和前序遍历序列 ...
- python实现二叉树的建立以及遍历(递归前序、中序、后序遍历,队栈前序、中序、后序、层次遍历)
#-*- coding:utf-8 -*- class Node: def __init__(self,data): self.data=data self.lchild=None self.rchi ...
随机推荐
- Angular 一些问题(跨域,后台接收不到参数)
1,跨域:跟前端没多大关系的,后台没设置头而已.这时候如果你们后端太菜你可以叫他加上每种语言 都不同,但是里面的呢荣是一样的.具体跨域可以跳转这里http://www.cnblogs.com/dojo ...
- HDFS源码分析EditLog之获取编辑日志输入流
在<HDFS源码分析之EditLogTailer>一文中,我们详细了解了编辑日志跟踪器EditLogTailer的实现,介绍了其内部编辑日志追踪线程EditLogTailerThread的 ...
- java和erlang之间的DES加解密
app登录,登录的密码要用DES加密,服务器是用erlang,客户端要同时支持多平台(Android.iOS).首先,Java端的DES加密的实现方式, 少说废话了,直接上代码,如下: public ...
- andeoid硬件解码
Finally, I must say, finally, we get low-level media APIs in Android, the Android hardware decoding ...
- 机器学习中的EM算法具体解释及R语言实例(1)
最大期望算法(EM) K均值算法很easy(可參见之前公布的博文),相信读者都能够轻松地理解它. 但以下将要介绍的EM算法就要困难很多了.它与极大似然预计密切相关. 1 算法原理 最好还是从一个样例開 ...
- 成长型思维模式Not yet
当做一件事失败了,要告诉他 暂未成功,暂时没有成功,继续努力,下次就有可能成功. 不及格,暂未及格 是两种思维模式,成长性的思维方式得到的是一个是努力型的人格
- Java 学习 day04
17-数组(概述-内存结构) 概念:同一种类型数据的集合,其实数组就是一个容器. 可以自动给数组中的元素从0开始编号,方便操作这些元素. int[] x = new int[3]; 01-数组(静态初 ...
- Python爬虫-- BeautifulSoup库
BeautifulSoup库 beautifulsoup就是一个非常强大的工具,爬虫利器.一个灵活又方便的网页解析库,处理高效,支持多种解析器.利用它就不用编写正则表达式也能方便的实现网页信息的抓取 ...
- 一文读懂实用拜占庭容错(PBFT)算法
在区块链中有一个著名的问题,就是拜占庭将军问题,对于拜占庭将军问题,网上的文章已经多得不要不要了,今天和大家分享的是其相关的实用拜占庭容错算法,一起来看看吧. 实用拜占庭容错算法(Practi ...
- php分10个不同等级压缩优化图片(PNG)
今天找到一个php写的压缩图片程序,可以分10个等级(0-9)来压缩,0等级时压缩比率不是很大,图片不会失真:随着压缩等级不断增大,图片会变得越来越不清晰,通常压缩后图片大小可以减少到原来的50%,压 ...