BZOJ1064 [Noi2008]假面舞会 【dfs】
题目
一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会。今年的面具都是主办方特别定制的。每个参加舞会的人都可以在入场时选择一 个自己喜欢的面具。每个面具都有一个编号,主办方会把此编号告诉拿该面具的人。为了使舞会更有神秘感,主办方把面具分为k (k≥3)类,并使用特殊的技术将每个面具的编号标在了面具上,只有戴第i 类面具的人才能看到戴第i+1 类面具的人的编号,戴第k 类面具的人能看到戴第1 类面具的人的编号。 参加舞会的人并不知道有多少类面具,但是栋栋对此却特别好奇,他想自己算出有多少类面具,于是他开始在人群中收集信息。 栋栋收集的信息都是戴第几号面具的人看到了第几号面具的编号。如戴第2号面具的人看到了第5 号面具的编号。栋栋自己也会看到一些编号,他也会根据自己的面具编号把信息补充进去。由于并不是每个人都能记住自己所看到的全部编号,因此,栋栋收集的信 息不能保证其完整性。现在请你计算,按照栋栋目前得到的信息,至多和至少有多少类面具。由于主办方已经声明了k≥3,所以你必须将这条信息也考虑进去。
输入格式
第一行包含两个整数n, m,用一个空格分隔,n 表示主办方总共准备了多少个面具,m 表示栋栋收集了多少条信息。接下来m 行,每行为两个用空格分开的整数a, b,表示戴第a 号面具的人看到了第b 号面具的编号。相同的数对a, b 在输入文件中可能出现多次。
输出格式
包含两个数,第一个数为最大可能的面具类数,第二个数为最小可能的面具类数。如果无法将所有的面具分为至少3 类,使得这些信息都满足,则认为栋栋收集的信息有错误,输出两个-1。
输入样例
6 5
1 2
2 3
3 4
4 1
3 5
输出样例
4 4
提示
100%的数据,满足n ≤ 100000, m ≤ 1000000。
题解
根据题目的描述,所有人的关系形成一种环状关系
假若给出的关系中存在环,那么环长一定是k的倍数
设所有环长的gcd为x,此时答案为[x大于3的因子,x]
假若没有环,结果就是所有最长链之和
现在问题是如何求环以及最长链
有一种dfs的方法很厉害
我们将原边赋值为1,建一个反边赋值为-1,这样就构造出了一个类似无向图的东西,我们就可以从一个点出发访问整个联通块
由于-1的存在,走反边会导致负值,走正边会形成正值,这样两点间长度就可以用差来求出
跑dfs时,遇到了返祖边,则形成环,统计答案,同时统计这个联通块的最小权值和最大权值,只差 + 1即为最长链长度
#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 100005,maxm = 2000005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 3) + (out << 1) + c - '0'; c = getchar();}
return out * flag;
}
int h[maxn],ne = 2;
struct EDGE{int to,nxt,w;}ed[maxm];
void build(int u,int v){
ed[ne] = (EDGE){v,h[u],1}; h[u] = ne++;
ed[ne] = (EDGE){u,h[v],-1}; h[v] = ne++;
}
int n,m,f[maxn],vis[maxn],pre[maxn],gmax[maxn],gmin[maxn],now;
int ansl,ansr;
int gcd(int a,int b){return b ? gcd(b,a % b) : a;}
int find(int u){return u == pre[u] ? u : pre[u] = find(pre[u]);}
void dfs(int u,int last){
gmax[now] = max(gmax[now],f[u]);
gmin[now] = min(gmin[now],f[u]);
vis[u] = true;
Redge(u) if ((k ^ 1) != last){
if (!vis[to = ed[k].to]) f[to] = f[u] + ed[k].w,dfs(to,k);
else {
ansr = gcd(abs(f[u] + ed[k].w - f[to]),ansr);
//printf("%d to %d\n",u,to);
}
}
}
int main(){
n = read(); m = read();
int a,b,fa,fb;
for (int i = 1; i <= n; i++) pre[i] = i;
while (m--){
a = read(); b = read();
build(a,b);
fa = find(a); fb = find(b);
if (fa != fb) pre[fb] = fa;
}
for (int i = 1; i <= n; i++) if (!vis[i]) now = find(i),dfs(i,0);
if (ansr){
for (int i = 3; i <= ansr; i++) if (ansr % i == 0){ansl = i; break;}
if (ansl < 3) puts("-1 -1");
else printf("%d %d\n",ansr,ansl);
}else {
for (int i = 1; i <= n; i++) if (find(i) == i) ansr += (gmax[i] - gmin[i] + 1);
if (ansr < 3) puts("-1 -1");
else printf("%d 3\n",ansr);
}
return 0;
}
BZOJ1064 [Noi2008]假面舞会 【dfs】的更多相关文章
- [BZOJ1064][Noi2008]假面舞会
[BZOJ1064][Noi2008]假面舞会 试题描述 一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会.今年的面具都是主办方特别定制的.每个参加舞会的人都可以在入场时选择一 个自己喜欢 ...
- 【BZOJ1064】[Noi2008]假面舞会 DFS树
[BZOJ1064][Noi2008]假面舞会 Description 一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会.今年的面具都是主办方特别定制的.每个参加舞会的人都可以在入场时选择 ...
- 【图论 搜索】bzoj1064: [Noi2008]假面舞会
做到最后发现还是读题比赛:不过还是很好的图论题的 Description 一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会.今年的面具都是主办方特别定制的.每个参加舞会的人都可以在入场时选 ...
- BZOJ1064 NOI2008假面舞会(dfs树)
将图中的环的长度定义为正向边数量-反向边数量,那么答案一定是所有环的环长的共同因子.dfs一下就能找到图中的一些环,并且图中的所有环的环长都可以由这些环长加加减减得到(好像不太会证).如果有环长为1或 ...
- [bzoj 1064][NOI2008]假面舞会(dfs判断环)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1064 分析: 如果a看到b,则a->b 那么: 1.如果图中有环,则说明这个环的 ...
- BZOJ1064 NOI2008 假面舞会 图论
传送门 将一组关系\((A,B)\)之间连一条边,那么显然如果图中存在环长为\(len\)的环,那么面具的种数一定是\(len\)的因数. 值得注意的是这里环的关系除了\(A \rightarrow ...
- BZOJ1064 NOI2008假面舞会
挺神的这题,发现只有环和链两种情况 搜索时我们只考虑环的,因为链可以看成找不到分类的环. 当成链时大小是的最大值是各链长的和,最小值是3 当成环时最大值是各环长的gcd,最小值是大于3的最小的ans的 ...
- 图论 公约数 找环和链 BZOJ [NOI2008 假面舞会]
BZOJ 1064: [Noi2008]假面舞会 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1655 Solved: 798[Submit][S ...
- NOI2008假面舞会
1064: [Noi2008]假面舞会 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 883 Solved: 462[Submit][Status] ...
随机推荐
- cookie和session是否可以保存对象
session看了一下,是可以保存对象的.语法很普通,但是cookie的话本身是只能保存string类型的信息的,这就需要先序列化,然后接收的页面反序列化后形成对象调用,为了防止乱码,需要在数据传输的 ...
- Netbackup常用命令--bpdbjobs
1.大纲 bpdbjobs – 与 NetBackup 作业数据库进行交互 bpdbjobs [-report] [-M master_servers] [-ignore_parent_jobs] [ ...
- Expires和Cache-Control
本文原链接:https://blog.csdn.net/zhouziyu2011/article/details/71312452 浅谈前端性能优化(一)——Expires和Cache-Control ...
- 使用Timer组件制作计时器
实现效果: 知识运用: Timer组件的interval属性 //获取或设置Timer组件Tick事件发生的时间间隔 public int Interval {get;set} NumericUpDo ...
- python基础一 day14 生成器函数进阶(1)
- Dapper学习总结
看了<Dapper从入门到精通>后的总结 (1)Dapper 是直接扩展 IDBConnection,而且是单独一个文件,可以直接嵌入到项目中使用. (2)通过手写sql语句,调用exec ...
- cocostudio的bug(1)
今天有个女同事问我一个问题,两个cocostudio的ui同时addChild到一个layer上面,高层级的ui设置visible为false,低层级的ui设置的visible设置为true,然后低层 ...
- 【bitset 技巧 分块】bzoj5087: polycomp
神仙zq发现了${n^2\sqrt n}\over 32$做法 Description 你有三个系数为0,1的多项式f(x),g(x),h(x) 求f(g(x)) mod h(x) 为方便起见,将答案 ...
- java--String、StringBuilder、StringBuffer的解析和比较?
一.String的解析 1.String的含义 ①String是不可以被继承的,String类是final类,String类是由char[]数组来存储字符串. ②String是不可变的字符序列,如果存 ...
- Linux-CentOS6.9启动流程排错
1 . CentOS6.9启动流程 POST 加电自检,是BIOS功能的一个主要部分.负责完成对CPU.主板.内存.硬盘子系统.显示子系统.串并行接口.键盘.CD-ROM光驱等硬件情况的检测. Boo ...