Dumb Bones(uva 10529)
题意:给定n,表示要放n个骨牌,每次放下骨牌,有可能向左倒的概率为pl,向右倒的概率为pr,如果倒下,会将那一侧的骨牌全部推倒,可以选择位置先后放骨牌,问说一种放骨牌次数最少的期望是多少。
/*
设dp[i]表示放置连续的i个期望的步数。
需要枚举放置的位置,即左边和右边有多少个,放置成功的期望步数为1/(1-pl-pr),如果放置失败了,那么就会是左边或右边的骨牌倒塌,此时重建的期望步数为dp[l]*pl+dp[r]*pr,所以可以得到转移方程:
dp[i]=min(dp[l]+dp[r]+(dp[l]*pl+dp[r]*pr+1)/(1-pl-pr))
*/
#include<iostream>
#include<cstdio>
#include<iostream>
#define N 1010
#define inf 1000000000
using namespace std;
int n;double dp[N],pl,pr;
int main(){
while(scanf("%d",&n)){
if(!n) break;
scanf("%lf%lf",&pl,&pr);
dp[]=;dp[]=/(-pl-pr);
for(int i=;i<=n;i++) dp[i]=inf;
for(int i=;i<=n;i++)
for(int j=;j<i;j++){
int l=j,r=i-j-;
dp[i]=min(dp[i],dp[l]+dp[r]+(dp[l]*pl+dp[r]*pr+)/(-pl-pr));
}
printf("%.2lf\n",dp[n]);
}
return ;
}
Dumb Bones(uva 10529)的更多相关文章
- 2018.09.09 UVa10529 - Dumb Bones(期望dp)
传送门 期望dp好题. f[i]表示摆放i个的最小花费,于是f[i]可以从f[j]与f[i-j+1]转移过来了. 代码: #include<bits/stdc++.h> #define N ...
- UVA 10529 - Dumb Bones(概率+区间dp)
UVA 10529 - Dumb Bones option=com_onlinejudge&Itemid=8&category=518&page=show_problem&am ...
- 并查集(UVA 1106)
POINT: 把每个元素看成顶点,则一个简单化合物就是一条无向边,若存在环(即k对组合中有k种元素),则危险,不应该装箱,反之,装箱: 用一个并查集维护连通分量集合,每次得到一种化合物(x, y)时检 ...
- UVA 10529-Dumb Bones(概率dp)
题意: 给出放一个多米诺骨牌,向左向右倒的概率,求要放好n个骨牌,需要放置的骨牌的期望次数. 分析: 用到区间dp的思想,如果一个位置的左面右面骨牌都已放好,考虑,放中间的情况, dp[i]表示放好前 ...
- L-Gap Substrings(uva 10829)
题意:有一种形如uvu形式的字符串,其中u是非空字符串,且V的长度正好为L,那么称这个字符串为L-Gap字符串 给出一个字符串S,以及一个正整数L,问S中有多少个L-Gap子串. /* 这道题用到一个 ...
- Minimum Sum LCM(uva 10791)
题意(就是因为读错题意而wa了一次):给一个数字n,范围在[1,2^23-1],这个n是一系列数字的最小公倍数,这一系列数字的个数至少为2 例如12,是1和12的最小公倍数,是3和4的最小公倍数,是1 ...
- Killer Problem (UVA 11898 )
Problem You are given an array of N integers and Q queries. Each query is a closed interval [l, r]. ...
- POJ 2250 Compromise (UVA 531)
LCS问题.基金会DP. 我很伤心WA非常多.就在LCS问题,需要记录什么路. 反正自己的纪录path错误,最后,就容易上当. 没有优化,二维阵列,递归打印,cin.eof() 来识别 end of ...
- uva 1639--精度处理方法之取对数(uva 1639)
1639 - Candy Time limit: 3.000 seconds 1639 CandyLazyChild is a lazy child who likes candy very much ...
随机推荐
- oracle中print_table存储过程实例介绍
oracle中pro_print_table存储过程实例介绍 存储过程(Stored Procedure),就是一组用于完成特定数据库功能的SQL语句集,该SQL语句集经过编译后存储在数据库系统中.这 ...
- 不安装oracle客户端如何使用plsql连接数据库
不安装oracle客户端如何使用plsql连接数据库 1. 准备工作 1.1下载plsqldev破解版软件 我这里使用plsqldev715版本 1.2下载instantclient-basic-wi ...
- Linux运维笔记--第二部
第2部-重要目录结构详解 1.回顾Linux目录结构知识 /dev/ 设备目录 /etc/ 系统配置及服务配置文件,启动命令的目录 /proc ...
- 数据结构C语言实现系列——线性表(单向链表)
#include <stdio.h> #include <stdlib.h> #define NN 12 #define MM 20 typedef int elemType ...
- UIDeviceOrientation 和 UIInterfaceOrientation
有时候,我们处理自动布局时,需要获取到屏幕旋转方向: 以下为本人亲测: UIInterfaceOrientation: 我们需要在- (void)viewDidLoad或其他方法中添加观察者,检测屏幕 ...
- 快速启动mongodb服务
在桌面创建一个mongodb.bat文件 输入以下内容: D:cd D:\mongodb\binstart mongod --dbpath D:\mongodb\data\dbcd D:\robot\ ...
- w3resource_MySQL练习: Aggregate_functions
w3resource_MySQL练习题:Aggregate_functions 1. Write a query to list the number of jobs available in t ...
- Linux任务计划、周期性任务执行
Linux任务计划.周期性任务执行 周期性任务执行: cron 守护进程(crond):服务,不间断地运行于后台 # service crond {start|stop|status|restart} ...
- HDU 4729 An Easy Problem for Elfness 主席树
题意: 给出一棵树,每条边有一个容量. 有若干次询问:\(S \, T \, K \, A \, B\),求路径\(S \to T\)的最大流量. 有两种方法可以增大流量: 花费\(A\)可以新修一条 ...
- mysql中的存储引擎
MySQL中常用的几种存储引擎:innoDB.bdb.myisam.memory以及这几个引擎的讲解: InnoDB存储引擎: (1) innodb存储引擎该mysql表提供了事务,回滚以及系统崩溃修 ...