Comparing randomized search and grid search for hyperparameter estimation

Compare randomized search and grid search for optimizing hyperparameters of a random forest. All parameters that influence the learning are searched simultaneously (except for the number of estimators, which poses a time / quality tradeoff).

The randomized search and the grid search explore exactly the same space of parameters. The result in parameter settings is quite similar, while the run time for randomized search is drastically lower.

The performance is slightly worse for the randomized search, though this is most likely a noise effect and would not carry over to a held-out test set.

Note that in practice, one would not search over this many different parameters simultaneously using grid search, but pick only the ones deemed most important.

Python source code: randomized_search.py

print(__doc__)

import numpy as np

from time import time
from operator import itemgetter
from scipy.stats import randint as sp_randint from sklearn.grid_search import GridSearchCV, RandomizedSearchCV
from sklearn.datasets import load_digits
from sklearn.ensemble import RandomForestClassifier # get some data
iris = load_digits()
X, y = iris.data, iris.target # build a classifier
clf = RandomForestClassifier(n_estimators=20) # Utility function to report best scores
def report(grid_scores, n_top=3):
top_scores = sorted(grid_scores, key=itemgetter(1), reverse=True)[:n_top]
for i, score in enumerate(top_scores):
print("Model with rank: {0}".format(i + 1))
print("Mean validation score: {0:.3f} (std: {1:.3f})".format(
score.mean_validation_score,
np.std(score.cv_validation_scores)))
print("Parameters: {0}".format(score.parameters))
print("") # specify parameters and distributions to sample from
param_dist = {"max_depth": [3, None],
"max_features": sp_randint(1, 11),
"min_samples_split": sp_randint(1, 11),
"min_samples_leaf": sp_randint(1, 11),
"bootstrap": [True, False],
"criterion": ["gini", "entropy"]} # run randomized search
n_iter_search = 20
random_search = RandomizedSearchCV(clf, param_distributions=param_dist,
n_iter=n_iter_search) start = time()
random_search.fit(X, y)
print("RandomizedSearchCV took %.2f seconds for %d candidates"
" parameter settings." % ((time() - start), n_iter_search))
report(random_search.grid_scores_) # use a full grid over all parameters
param_grid = {"max_depth": [3, None],
"max_features": [1, 3, 10],
"min_samples_split": [1, 3, 10],
"min_samples_leaf": [1, 3, 10],
"bootstrap": [True, False],
"criterion": ["gini", "entropy"]} # run grid search
grid_search = GridSearchCV(clf, param_grid=param_grid)
start = time()
grid_search.fit(X, y) print("GridSearchCV took %.2f seconds for %d candidate parameter settings."
% (time() - start, len(grid_search.grid_scores_)))
report(grid_search.grid_scores_)

Comparing randomized search and grid search for hyperparameter estimation的更多相关文章

  1. 3.2. Grid Search: Searching for estimator parameters

    3.2. Grid Search: Searching for estimator parameters Parameters that are not directly learnt within ...

  2. scikit-learn:3.2. Grid Search: Searching for estimator parameters

    參考:http://scikit-learn.org/stable/modules/grid_search.html GridSearchCV通过(蛮力)搜索參数空间(參数的全部可能组合).寻找最好的 ...

  3. Grid search in the tidyverse

    @drsimonj here to share a tidyverse method of grid search for optimizing a model's hyperparameters. ...

  4. How to Grid Search Hyperparameters for Deep Learning Models in Python With Keras

    Hyperparameter optimization is a big part of deep learning. The reason is that neural networks are n ...

  5. Grid Search学习

    转自:https://www.cnblogs.com/ysugyl/p/8711205.html Grid Search:一种调参手段:穷举搜索:在所有候选的参数选择中,通过循环遍历,尝试每一种可能性 ...

  6. grid search 超参数寻优

    http://scikit-learn.org/stable/modules/grid_search.html 1. 超参数寻优方法 gridsearchCV 和  RandomizedSearchC ...

  7. [转载]Grid Search

    [转载]Grid Search 初学机器学习,之前的模型都是手动调参的,效果一般.同学和我说他用了一个叫grid search的方法.可以实现自动调参,顿时感觉非常高级.吃饭的时候想调参的话最差不过也 ...

  8. 【起航计划 032】2015 起航计划 Android APIDemo的魔鬼步伐 31 App->Search->Invoke Search 搜索功能 Search Dialog SearchView SearchRecentSuggestions

    Search (搜索)是Android平台的一个核心功能之一,用户可以在手机搜索在线的或是本地的信息.Android平台为所有需要提供搜索或是查询功能的应用提 供了一个统一的Search Framew ...

  9. grid search

    sklearn.metrics.make_scorer(score_func, greater_is_better=True, needs_proba=False, needs_threshold=F ...

随机推荐

  1. webservice传递特殊字符时的解决的方法

    webservice soap报文是xml格式交互的,当中针对特殊字符传递无法解析,导致数据处理失败. 解决的方法例如以下: 1.在发送报文之前,针对报文进行base64转码,转义后避免报文中含有特殊 ...

  2. [React + webpack] hjs-webpack

    You can easily spend hours configuring the perfect dev environment with all the latest hotness like ...

  3. Systemtap kernel.trace("*") events source code

    http://blog.163.com/digoal@126/blog/static/16387704020131014562216/

  4. hdu2660 Accepted Necklace (DFS)

    Problem Description I have N precious stones, and plan to use K of them to make a necklace for my mo ...

  5. iOS-CGContextRef画各种图形例子

    iOS-CGContextRef画各种图形例子 绘制效果图 绘制代码 - (void)drawRect:(CGRect)rect { //一个不透明类型的Quartz 2D绘画环境,相当于一个画布,你 ...

  6. android开发之this.finish()的使用 分类: android 学习笔记 2015-07-18 19:05 30人阅读 评论(0) 收藏

    在一个Activity用完之后应该将之finish掉,但是,之前在学校里自己摸索着开发时并没有太注意这个问题,因为activity无论是否finish掉对功能的影响貌似都不是那么明显(这是读书时候的观 ...

  7. C#使用框架,打开新选项卡

    C#使用框架,打开新选项卡: --打开函数 function Open(text, url) {        if ($("#tabs").tabs('exists', text ...

  8. SQL数据库安装

    安装过程中经常出现失败或者提示,那么久要清楚干净所有的数据在重新安装,步骤如下. SQL2008卸载 一.从控制面板卸载 1)点击计算机右下角“开始”,点击“控制面板” 2)点击“卸载程序”. 卸载与 ...

  9. 介绍一个小工具 Linqer

    http://www.cnblogs.com/huangxincheng/archive/2011/05/12/2044990.html

  10. tomcat 正常启动,无法访问。且项目启动无问题。。。的解决办法。。

    Eclipes解决方法: 1.右击项目,选择propreties选项 2.在弹出的首选项窗口的左侧选择“Web Project Settings” 3.修改context root:输入框,修改成自己 ...