Comparing randomized search and grid search for hyperparameter estimation
Comparing randomized search and grid search for hyperparameter estimation
Compare randomized search and grid search for optimizing hyperparameters of a random forest. All parameters that influence the learning are searched simultaneously (except for the number of estimators, which poses a time / quality tradeoff).
The randomized search and the grid search explore exactly the same space of parameters. The result in parameter settings is quite similar, while the run time for randomized search is drastically lower.
The performance is slightly worse for the randomized search, though this is most likely a noise effect and would not carry over to a held-out test set.
Note that in practice, one would not search over this many different parameters simultaneously using grid search, but pick only the ones deemed most important.
Python source code: randomized_search.py
print(__doc__) import numpy as np from time import time
from operator import itemgetter
from scipy.stats import randint as sp_randint from sklearn.grid_search import GridSearchCV, RandomizedSearchCV
from sklearn.datasets import load_digits
from sklearn.ensemble import RandomForestClassifier # get some data
iris = load_digits()
X, y = iris.data, iris.target # build a classifier
clf = RandomForestClassifier(n_estimators=20) # Utility function to report best scores
def report(grid_scores, n_top=3):
top_scores = sorted(grid_scores, key=itemgetter(1), reverse=True)[:n_top]
for i, score in enumerate(top_scores):
print("Model with rank: {0}".format(i + 1))
print("Mean validation score: {0:.3f} (std: {1:.3f})".format(
score.mean_validation_score,
np.std(score.cv_validation_scores)))
print("Parameters: {0}".format(score.parameters))
print("") # specify parameters and distributions to sample from
param_dist = {"max_depth": [3, None],
"max_features": sp_randint(1, 11),
"min_samples_split": sp_randint(1, 11),
"min_samples_leaf": sp_randint(1, 11),
"bootstrap": [True, False],
"criterion": ["gini", "entropy"]} # run randomized search
n_iter_search = 20
random_search = RandomizedSearchCV(clf, param_distributions=param_dist,
n_iter=n_iter_search) start = time()
random_search.fit(X, y)
print("RandomizedSearchCV took %.2f seconds for %d candidates"
" parameter settings." % ((time() - start), n_iter_search))
report(random_search.grid_scores_) # use a full grid over all parameters
param_grid = {"max_depth": [3, None],
"max_features": [1, 3, 10],
"min_samples_split": [1, 3, 10],
"min_samples_leaf": [1, 3, 10],
"bootstrap": [True, False],
"criterion": ["gini", "entropy"]} # run grid search
grid_search = GridSearchCV(clf, param_grid=param_grid)
start = time()
grid_search.fit(X, y) print("GridSearchCV took %.2f seconds for %d candidate parameter settings."
% (time() - start, len(grid_search.grid_scores_)))
report(grid_search.grid_scores_)
Comparing randomized search and grid search for hyperparameter estimation的更多相关文章
- 3.2. Grid Search: Searching for estimator parameters
3.2. Grid Search: Searching for estimator parameters Parameters that are not directly learnt within ...
- scikit-learn:3.2. Grid Search: Searching for estimator parameters
參考:http://scikit-learn.org/stable/modules/grid_search.html GridSearchCV通过(蛮力)搜索參数空间(參数的全部可能组合).寻找最好的 ...
- Grid search in the tidyverse
@drsimonj here to share a tidyverse method of grid search for optimizing a model's hyperparameters. ...
- How to Grid Search Hyperparameters for Deep Learning Models in Python With Keras
Hyperparameter optimization is a big part of deep learning. The reason is that neural networks are n ...
- Grid Search学习
转自:https://www.cnblogs.com/ysugyl/p/8711205.html Grid Search:一种调参手段:穷举搜索:在所有候选的参数选择中,通过循环遍历,尝试每一种可能性 ...
- grid search 超参数寻优
http://scikit-learn.org/stable/modules/grid_search.html 1. 超参数寻优方法 gridsearchCV 和 RandomizedSearchC ...
- [转载]Grid Search
[转载]Grid Search 初学机器学习,之前的模型都是手动调参的,效果一般.同学和我说他用了一个叫grid search的方法.可以实现自动调参,顿时感觉非常高级.吃饭的时候想调参的话最差不过也 ...
- 【起航计划 032】2015 起航计划 Android APIDemo的魔鬼步伐 31 App->Search->Invoke Search 搜索功能 Search Dialog SearchView SearchRecentSuggestions
Search (搜索)是Android平台的一个核心功能之一,用户可以在手机搜索在线的或是本地的信息.Android平台为所有需要提供搜索或是查询功能的应用提 供了一个统一的Search Framew ...
- grid search
sklearn.metrics.make_scorer(score_func, greater_is_better=True, needs_proba=False, needs_threshold=F ...
随机推荐
- 看个人思路吧,清晰的话就简单 CodeForces 271A - Beautiful Year
It seems like the year of 2013 came only yesterday. Do you know a curious fact? The year of 2013 is ...
- unity3D与网页的交互
由于项目需要,要求用unity来展示三维场景,并在三维中能够方便的查询数据库等.一开始尝试在unity中直接连接数据库,当时连的xml,然而每次发布成网页后都会出现路径找不到等问题,所以迫不得已采用了 ...
- android开发之Notification学习笔记
今天总结了一下Notification的使用,与大家分享一下. MainActivity.java: 本文参考:http://www.jb51.net/article/36567.htm,http:/ ...
- 多列的行列转换(PIVOT,UNPIVOT)
形式1 形式2 形式3 有时候可能会有这样的需求: 将一张表的所有列名转做为数据的一列数据,将一列数据作为整张表的列名 当列比较多时,只用PIVOT是解决不了的,经过研究,需要将UNPIVOT 和 P ...
- js正则实现用户输入银行卡号的控制及格式化
//js正则实现用户输入银行卡号的控制及格式化 <script language="javascript" type="text/javascript"& ...
- OC - 19.GCD
简介 GCD(Grand Center Dispatch)是Apple为多核的并行运算提出的解决方案,纯C语言 更加适配多核处理器,且自动管理线程的生命周期,使用起来较为方便 GCD通过任务和队列实现 ...
- Notification和KVO有什么不同
Notification是推送通知,我们可以建立一个通知中心,存放创建多个通知,在不同的地方在需要的时候push调用和KVO不同的是,KVO是键值观察,只能观察一个值,这就是区别
- C# 封装
封装就是吧里面实现的细节包起来,这样很复杂的逻辑经过包装之后给别人使用就很方便,别人不需要了解里面是如何实现的,只要传入所需要的参数就可以得到想要的结果.其实这和黑盒测试差不多
- ubuntu12.04安装QQ2013
1.下载Longene QQ2013SP6 http://pan.baidu.com/s/1hq83fWo 2.安装 1)如果之前安装过旧版本需要先卸载(通过dpkg -l | grep qq查看). ...
- 06MySQL数据库入门
1.数据库的概念 数据库是保存数据的仓库,可以方便的把数据放进去,并且把数据根据各种需求取出来. 数据库管理系统(Database Management System,DBMS)是对数据库进行管理(增 ...