描述


http://poj.org/problem?id=2914

求无向图中最小割.

Minimum Cut
Time Limit: 10000MS   Memory Limit: 65536K
Total Submissions: 8679   Accepted: 3659
Case Time Limit: 5000MS

Description

Given an undirected graph, in which two vertices can be connected by multiple edges, what is the size of the minimum cut of the graph? i.e. how many edges must be removed at least to disconnect the graph into two subgraphs?

Input

Input contains multiple test cases. Each test case starts with two integers N and M (2 ≤ N ≤ 500, 0 ≤ MN × (N − 1) ⁄ 2) in one line, where N is the number of vertices. Following are M lines, each line contains M integers A, B and C (0 ≤ A, B < N, AB, C > 0), meaning that there C edges connecting vertices A and B.

Output

There is only one line for each test case, which contains the size of the minimum cut of the graph. If the graph is disconnected, print 0.

Sample Input

3 3
0 1 1
1 2 1
2 0 1
4 3
0 1 1
1 2 1
2 3 1
8 14
0 1 1
0 2 1
0 3 1
1 2 1
1 3 1
2 3 1
4 5 1
4 6 1
4 7 1
5 6 1
5 7 1
6 7 1
4 0 1
7 3 1

Sample Output

2
1
2

Source

Baidu Star 2006 Semifinal
Wang, Ying (Originator)

Chen, Shixi (Test cases)

分析


不会做啊...

可以暴力枚举源点和汇点,然后开始瞎搞...必定超时啊...

有专门解决这种问题的算法: Stoer_Wagner.

好吧其实我并没有理解是为啥......感觉只知道算法思路.

设所要求的最小割为Cut.先找任意s,t的最小割,如果s,t在Cut两侧,则割(s,t)就是Cut,否则割(s,t)>=Cut,并且将s,t合成一个点不会影响Cut.就这样,我们每次找任意的s,t的割,然后合并.在找到分居Cut两侧的s,t之前,合并对结果没有影响,也就是说Cut还在图中.当某一步找到s,t分居在Cut两侧的时候,那一步的割(s,t)就是Cut,如果直到最后一步前还没有出现这种情况,最后一步只有两个点,只有一个割,又因为Cut一定在图中,所以图中的割就是Cut,综上,一定能找到Cut.但是我们不知道是哪一步找到的,所以记录一个min值就好了.

 #include <cstdio>
#include <cstring>
#include <algorithm>
#define for1(i,a,n) for(int i=(a);i<=(n);i++)
#define for2(i,a,n) for(int i=(a);i<n;i++)
#define read(a) a=getnum()
#define CC(i,a) memset(i,a,sizeof(i))
using namespace std; const int maxn=+,INF=0x7fffffff;
int n,m;
int v[maxn],w[maxn];
bool vis[maxn];
int g[maxn][maxn]; inline int getnum() { int r=;char c;c=getchar();while(c<''||c>'') c=getchar();while(c>=''&&c<='') {r=r*+c-'';c=getchar();}return r; } int stoer_wagner(int n)
{
int min_cut=INF;
for1(i,,n) v[i]=i;
while(n>)
{
int pre=;
CC(vis,);
CC(w,);
for2(i,,n)
{
int k=-;
for1(j,,n)
{
if(!vis[v[j]])
{
w[v[j]]+=g[v[j]][v[pre]];
if(k==-||w[v[j]]>w[v[k]])
{
k=j;
}
}
}
vis[v[k]]=true; if(i==n-)
{
const int s=v[pre],t=v[k];
min_cut=min(min_cut,w[t]);
for1(j,,n)
{
g[s][v[j]]+=g[t][v[j]];
g[v[j]][s]+=g[t][v[j]];
}
v[k]=v[n--];
}
pre=k;
}
}
return min_cut;
} int main()
{
#ifndef ONLINE_JUDGE
freopen("min.in","r",stdin);
freopen("min.out","w",stdout);
#endif
while(scanf("%d%d",&n,&m)!=EOF)
{
CC(g,);
while(m--)
{
int u,v,w;
read(u); read(v); read(w);
u++; v++;
g[u][v]+=w;
g[v][u]+=w;
}
printf("%d\n",stoer_wagner(n));
}
#ifndef ONLINE_JUDGE
fclose(stdin);
fclose(stdout);
system("min.out");
#endif
return ;
}

POJ_2914_Minimum_Cut_(Stoer_Wagner)的更多相关文章

  1. POJ 2914 Minimum Cut

    Minimum Cut Time Limit: 10000MS   Memory Limit: 65536K Total Submissions: 9319   Accepted: 3910 Case ...

  2. POJ2914 (未解决)无向图最小割|Stoer-Wagner算法|模板

    还不是很懂,贴两篇学习的博客: http://www.hankcs.com/program/algorithm/poj-2914-minimum-cut.html http://blog.sina.c ...

  3. ZOJ 2753 Min Cut (Destroy Trade Net)(无向图全局最小割)

    题目大意 给一个无向图,包含 N 个点和 M 条边,问最少删掉多少条边使得图分为不连通的两个部分,图中有重边 数据范围:2<=N<=500, 0<=M<=N*(N-1)/2 做 ...

  4. POJ2914

    POJ2914 无向图的最小割 题意:给你一个无向图,然后去掉其中的n条边,使之形成两个连通分量,也即原无向图不连通,求n的最小值. 输入: m(无向图点集),n(无向图边集) a,b,c(a,b两点 ...

  5. POJ 2914 Minimum Cut 最小割图论

    Description Given an undirected graph, in which two vertices can be connected by multiple edges, wha ...

  6. poj Minimum( CutStoer Wagner算法)

    Minimum Cut 题目: 给出一张图.要求你删除最小割权和图. 算法分析: ////////////////////     转载 --- ylfdrib   ///////////////// ...

  7. POJ 2914 Minimum Cut【最小割 Stoer-Wangner】

    题意:求全局最小割 不能用网络流求最小割,枚举举汇点要O(n),最短增广路最大流算法求最大流是O(n2m)复杂度,在复杂网络中O(m)=O(n2),算法总复杂度就是O(n5):就算你用其他求最大流的算 ...

  8. 无向图最小割Stoer-Wagner算法学习

    无向连通网络,去掉一个边集可以使其变成两个连通分量则这个边集就是割集,最小割集当然就权和最小的割集. 使用最小切割最大流定理: 1.min=MAXINT,确定一个源点 2.枚举汇点 3.计算最大流,并 ...

  9. HDU 6081 度度熊的王国战略(全局最小割堆优化)

    Problem Description度度熊国王率领着喵哈哈族的勇士,准备进攻哗啦啦族.哗啦啦族是一个强悍的民族,里面有充满智慧的谋士,拥有无穷力量的战士.所以这一场战争,将会十分艰难.为了更好的进攻 ...

随机推荐

  1. ns2出现Client: Handoff Attempt的情况解决

    找到mac/mac-802_11.cc,这是系统本身一个bug,对于adhoc网络无需进行切换尝试. > if (*rcount == 3 && handoff == 0) {& ...

  2. Oracle 数据库(oracle Database)Select 多表关联查询方式

    Oracle数据库中Select语句语法及介绍 SELECT [ ALL | DISTINCT ] <字段表达式1[,<字段表达式2[,…] FROM <表名1>,<表名 ...

  3. ios paper for facebook 使用第三方库

    facebook paper使用的第三方库 Facebook Paper使用的第三方库 第三方库名 简介 链接 ACE code editor https://github.com/ajaxorg/a ...

  4. iOS8 【xcode6中添加pch全局引用文件】

    前沿:xcode6中去掉了pch,为了一些琐碎的头文件引用,加快了 编译速度! xcode6之前的版本建项目就自动添加了是这样的: xcode6后的版本要自己手动的添加步骤如下: 1)  2) 3) ...

  5. OC与Swift的区别一(文件结构)

    1.文件后缀名 oc的文件后缀名为:头文件.h  主体文件.m swift文件后缀名为:.swift 2. 代码分隔符 oc中使用分号;作为代码分隔符 swift中无需使用代码分隔符,以行作为代码分隔 ...

  6. javascript 基础2第12节

    1. <html> <head> <title>javascript基础</title> </head> <body> 1.Nu ...

  7. 浅析JAVA设计模式(二)

    2. 里氏替换原则:LSP(Liskov Substitution Principle)里氏替换原则,定义为只要父类出现的地方子类就可以出现,而且用子类替换后,程序也不会出现问题,使用者根本不用关心是 ...

  8. bm25

    BM25算法,通常用来作搜索相关性平分.一句话概况其主要思想:对Query进行语素解析,生成语素qi:然后,对于每个搜索结果D,计算每个语素qi与D的相关性得分,最后,将qi相对于D的相关性得分进行加 ...

  9. php 常用五种模式

    /* 设计模式之单例模式 $_instance 必须声明为静态的私有变量 构造函数必须声明为私有,防止外部程序 new 类从而失去单例模式的意义 getInstance() 方法必须设置为公有的,必须 ...

  10. php单引号和双引号的区别与用法

    php里的单引号把内容当成纯文本,不会经过服务器翻译.而双引号则与此相反.里面的内容会经过服务器处理(process). 举个简单的例子:   $foo="data"; echo ...